检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北农业大学海洋学院,河北秦皇岛066000
出 处:《科学养鱼》2023年第10期80-82,共3页Scientific Fish Farming
基 金:河北省属高等学校基本科研业务费研究项目(KY2021012)。
摘 要:在传统的凡纳滨对虾养殖过程中,需要根据养殖经验确定投喂量,容易导致饲料过剩或不足的问题。为解决这一问题,研究者建立预测模型预测投喂量,主要使用BP神经网络预测模型对水产养殖投饵量进行预测(杨加庆,2018;陆天辰,2020)。近年来,随着计算机深度学习的发展,相关模型具有更强的数据挖掘和泛化能力。何津民(2022)提出IPSO-CNN-LSTM-ATTN对虾投饵量预测模型,改善了BP神经网络过拟合和稳定性差的问题,然而该类模型训练数据来自养殖记录,这需要人工长期进行记录。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49