参与贡献维度下档案众包用户的类型细分与差异化激励  被引量:3

Type Segmentation and Differentiated Incentives for Archives Crowdsourcing Users under the Dimension of Contribution Participation

在线阅读下载全文

作  者:陈建[1] 丁越 CHEN Jian;DING Yue(School of History and Culture,Shandong University,Ji'nan 250100,China)

机构地区:[1]山东大学历史文化学院,济南250100

出  处:《档案学通讯》2023年第6期86-94,共9页Archives Science Bulletin

基  金:2018年度国家社会科学基金青年项目“基于过程管理的历史档案开发利用众包模式研究”(18CTQ039)。

摘  要:与商业领域众包不同,档案众包用户呈现明显的参与不均衡性。作为一种以用户为核心的知识生产方式,档案众包的有效激励必须建立在对用户类型的准确理解和细分的基础上。基于贡献质量和贡献数量维度可以将用户细分为核心关注区用户、优先改进区用户、辅助关注区用户和优势维持区用户四种类型,四种类型用户并非严格泾渭分明,而是存在流动转换,不同类型用户在众包实践中的贡献差异较大,应在准确理解和细分用户的基础上实施差异化激励。档案众包激励的本质并非吸引更多的参与,而是获得更多的贡献,激励措施真正的目标应当是激励“正确的人”。基于用户类型细分去讨论激励,有助于将激励从粗放的“人海战略”向更精准的“细分战略”推进。Unlike crowdsourcing in the business field,archives crowdsourcing g users exhibit significant participation imbalances.As a user-centric knowledge production method,effective incentives for archives crowdsourcing must be based on an accurate understanding and segmentation of user types.Based on the dimensions of contribution quality and quantity,users can be segmented into four types:Core Focus Area Users,Priority Improvement Area Users,Auxiliary Focus Area Users,and Advantage Maintenance Area Users.These four types of users are not strictly distinct,but have fluid transformation.Different types of users exhibit significant differences in their contributions during crowdsourcing practices,and differentiated incentives should be implemented based on accurate understanding and segmentation of users.The essence of incentives in archives crowdsourcing is not to attract more participation but to obtain more contributions.The true goal of incentive measures should be to motivate the"right people."Discussing incentives based on user type segmentation helps shift incentives from a broad"mass strategy"to a more precise"segmentation strategy."

关 键 词:档案众包 用户细分 参与贡献 差异化激励 参与不均 

分 类 号:G270.72[文化科学—档案学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象