检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张琦 赵禾苗 杨康 陈静 杨瑞琴[1] 王冲 ZHANG Qi;ZHAO He-miao;YANG Kang;CHEN Jing;YANG Rui-qin;WANG Chong(People’s Public Security University of China,Beijing 100038,China;Wafangdian Public Security Bureau,Dalian 116300,Liaoning Province,China;Key Laboratory of Forensic Genetics,Institute of Forensic Science,Ministry of Public Security,Beijing 100038,China;Xi’an Public Security Bureau,Xi’an 710038,China)
机构地区:[1]中国人民公安大学,北京100038 [2]瓦房店市公安局,辽宁大连116300 [3]公安部鉴定中心法医遗传学公安部重点实验室,北京100038 [4]西安市公安局,陕西西安710038
出 处:《法医学杂志》2023年第5期447-451,共5页Journal of Forensic Medicine
基 金:中央级公益性科研院所资助项目(2020JB001)。
摘 要:目的利用月经血特异性mRNA标志检测技术结合统计学方法,建立基于朴素贝叶斯和多元logistic回归方法的月经血鉴定模型,以定量区分月经血与其他体液。方法采集86份月经血、48份外周血、48份阴道分泌物、24份精液和24份唾液样本,经试剂盒提取样本RNA、反转录后得到cDNA,对5种月经血特异性标志,包括基质金属蛋白酶(matrix metalloproteinase,MMP)家族的成员MMP3、MMP7、MMP11,孕激素相关子宫内膜蛋白(progestogens associated endometrial protein,PAEP)和斯钙素-1(stanniocalcin-1,STC1)进行扩增和电泳检测分析。采用朴素贝叶斯和多元logistic回归对检测结果进行分析。结果朴素贝叶斯和多元logistic回归法构建的分类模型对月经血归类的准确率达88.37%和91.86%。在非月经血体液中,对外周血、唾液和精液的区分准确率普遍高于90%,分辨阴道分泌物时准确率较低,分别为16.67%和33.33%。结论mRNA检测技术结合统计学方法可对月经血建立分类判别模型,可用于区分月经血和其他体液,并对分析结果进行定量描述,在斑迹鉴定中具有一定的应用价值。Objective To establish the menstrual blood identification model based on Naïve Bayes and multivariate logistic regression methods by using specific mRNA markers in menstrual blood detection technology combined with statistical methods,and to quantitatively distinguish menstrual blood from other body fluids.Methods Body fluids including 86 menstrual blood,48 peripheral blood,48 vaginal secretions,24 semen and 24 saliva samples were collected.RNA of the samples was extracted and cDNA was obtained by reverse transcription.Five menstrual blood-specific markers including members of the matrix metalloproteinase(MMP)family MMP3,MMP7,MMP11,progestogens associated endometrial protein(PAEP)and stanniocalcin-1(STC1)were amplified and analyzed by electrophoresis.The results were analyzed by Naïve Bayes and multivariate logistic regression.Results The accuracy of the classification model constructed was 88.37%by Naïve Bayes and 91.86%by multivariate logistic regression.In non-menstrual blood samples,the distinguishing accuracy of peripheral blood,saliva and semen was generally higher than 90%,while the distinguishing accuracy of vaginal secretions was lower,which were 16.67%and 33.33%,respectively.Conclusion The mRNA detection technology com-bined with statistical methods can be used to establish a classification and discrimination model for menstrual blood,which can distignuish the menstrual blood and other body fluids,and quantitative de-scription of analysis results,which has a certain application value in body fluid stain identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15