检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱伟 段跳楠 吉咸阳 董小舒 王柯俨[2] ZHU Wei;DUAN Tiaonan;JI Xianyang;DONG Xiaoshu;WANG Keyan(Nanjing LES Electronic Equipment Co.Ltd.,Nanjing 210007,China;School of Telecommunications Engineering,Xidian University,Xi'an 710071,China)
机构地区:[1]南京莱斯电子设备有限公司,南京210007 [2]西安电子科技大学通信工程学院,西安710071
出 处:《指挥信息系统与技术》2023年第5期86-93,共8页Command Information System and Technology
摘 要:在低光照雾霾场景下,图像质量严重下降。现有的深度学习去雾方法缺乏对低光照去雾后图像色偏的有效校正,且大多运行时间长且模型参数量大,在实际应用中不便部署。针对上述问题,以编解码网络结构为基础,提出了一种端到端、轻量化深度神经网络(LDNet)用于低光照雾霾图像去雾。该网络采用多尺度架构来获取不同层级的图像信息,以充分利用图像的深浅层特征;在此基础上,设计了轻量化多级特征融合模块和轻量化通道注意力模块提取各层级的特征信息,以解决常规模型在低模型参数量和低计算复杂度情况下特征提取能力差的问题;最后,联合均方误差内容损失和CIEDE2000色偏损失共同优化网络,进一步提高了轻量化网络的学习能力。试验结果表明,与现有的去雾网络相比,LDNet能有效恢复低光照雾霾场景下的有雾图像质量,且具有资源占用少、参数量小和运算量低的优点。In low-light haze scenarios,image quality is severely degraded.In existing deep learning-based dehazing methods,it is lack of effective correction of image color bias after lowlight dehazing,and most methods need long run time and a large amount of model parameters.So they are inconve-nient to deploy in practice.Aimed at the above problems,an end-to-end lightweight deep neural net-work(LDNet)is proposed based on the encoder-decoder network structure to dehazing for low-light hazed images.In the LDNet,a multi-scale architecture is adopted to obtain different levels of image in-formation.Thus,it can make full use of the deep and shallow features of an image.On this basis,a lightweight multilevel feature fusion module and a lightweight channel attention module are designed to extract feature information of each level,in order to solve the problem about poor feature extraction ability of conventional models under the condition of low number of model parameters and low compu-tational complexity.Finally,the network is optimized by combining mean square error(MSE)loss with the color deviations loss of CIEDE2000.Thus,the learning ability of the lightweight network is further improved.Experimental result shows that compared with the existing dehazing network,LD-Net can effectively restore the quality of hazed images in low-light haze scenarios,and has advantages of low resource consumption,small quantity of parameters and low computation.
关 键 词:低光照图像去雾 轻量化深度神经网络 端到端 色偏损失
分 类 号:TN919.8[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7