面向数据中心的服务器能耗模型综述  被引量:1

A Survey of Server Energy Consumption Models in Data Center

在线阅读下载全文

作  者:王东清 李道童[1] 彭继阳 叶丰华[1] 张炳会 WANG Dongqing;LI Daotong;PENG Jiyang;YE Fenghua;ZHANG Binghui(Inspur Electronic Information Industry Co.,Ltd.,Beijing 100085,China)

机构地区:[1]浪潮电子信息产业股份有限公司,北京100085

出  处:《计算机测量与控制》2023年第11期7-15,共9页Computer Measurement &Control

基  金:山东省基金项目(2019LZH006)。

摘  要:伴随着云计算技术的快速发展,数据中心的服务器能耗日益激增,带来了严重的经济和环境问题,降低数据中心能耗,对缩减数据中心运营成本、实现全球“双碳”战略目标具有重要意义;因此,不同层面的服务器能耗模型构建和预估成为了近年来研究的热点;据此,从硬件、软件层面系统地总结了服务器能耗模型的相关工作;在硬件层面,对服务器的整体能耗按加法模型、基于系统利用率模型和其他模型分类;同时,还总结了服务器部件粒度的能耗模型,涵盖CPU、内存、磁盘和网络接口;在软件层面,按机器学习的类别将服务器能耗模型归纳为监督学习、非监督学习、强化学习;此外,还比较了不同能耗模型的优缺点、适用场景,展望了能耗模型的未来研究方向。With the rapid development of cloud computing,the increasing demand for server energy consumption in data centers leads to crucial economic and environmental issues.Reducing the data center energy consumption is of great significance to save the operating cost of data centers and realize the global“double-carbon”strategic goal.Therefore,the construction and prediction of server energy consumption models at different levels become a research hotspots in recent years.Accordingly,the relevant work of server consumption models is systematically summarized from two levels of hardware and software.At the hardware level,the overall energy consumption models of the cloud server are classified from the additive models,models based on system utilization rate and other models.Meanwhile,the energy consumption models of the server components are also summarized,including the CPU,memory,disk and network interface.At the software level,the server energy consumption models are summarized according to the category of machine learning,such as supervised learning,unsupervised learning and reinforcement learning.Additionally,the advantages,shortcoming and suitable scenarios of different consumption models are also compared,which prospects the future research directions of consumption models.

关 键 词:云计算 数据中心 能耗模型 监督学习 非监督学习 强化学习 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象