检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈垦 欧鸥[3] 杨长志 龚帅 欧阳飞 向东升 CHEN Ken;OU Ou;YANG Changzhi;GONG Shuai;OUYANG Fei;XIANG Dongsheng(State Key Laboratory of Millimeter Waves,Southeast University,Nanjing 211189,China;Sichuan Digital Transportation Technology Co.,Ltd.,Chengdu 610218,China;School of computer and network security(Oxford Brooks College),Chengdu University of Technology,Chengdu 610059,China;Chenglizhiyuan Technology(Chengdu)Co.,Ltd.,Chengdu 610059,China)
机构地区:[1]东南大学信息科学与工程学院毫米波国家重点实验室,南京211189 [2]四川数字交通科技股份有限公司,成都610218 [3]成都理工大学计算机与网络安全学院(牛津布鲁克斯学院),成都610059 [4]成理智源科技(成都)有限公司,成都610059
出 处:《计算机测量与控制》2023年第11期53-59,共7页Computer Measurement &Control
基 金:四川省科技厅应用基础研究项目(2021YJ0335)。
摘 要:山坡地区是落石频发的区域,凭人力难以及时发现灾害的发生;为及时检测到落石的发生并做出应对措施,提出一种基于改进YOLOX的落石检测方法,自动检测并报告落石的发生情况;通过自制落石数据集训练YOLOX网络,优化空间金字塔池化结构,获取更多语义信息,并引入ECA-Net(Efficient Channel Attention Module,高效通道注意力模块),提高特征的提取能力和特征间的信息传播,同时改进损失函数并使用数据增强,提高网络训练效果;实验结果表明,改进YOLOX算法的mAP@0.5为92.50%,每秒检测帧数为62.6,相较于YOLOX算法,mAP@0.5提高3.45%,每秒检测帧数上涨0.3;与原算法相比,在不损失性能的情况下,精度有较大的提升,同时满足图片与视频数据的实时检测要求。Hillside areas are prone to falling rocks,so it is difficult to detect the occurrence of disasters in time by manpower.In order to timely detect the occurrence of falling rocks and take steps,a falling rocks detection method based on improved YOLOX is proposed to automatically detect and report the occurrence of falling rocks.The self-made rockfall data set is used to train the YOLOX network,optimize the spatial pyramid pool structure,and obtain more semantic information.The attention mechanism of efficient channel attention module(ECA-Net)channel is introduced to improve the feature extraction ability and information transmission between features.Meanwhile,the loss function is improved,and the data enhancement is used to improve the network training effect.The experimental results show that the mAP@0.5 of the improved YOLOX algorithm is 92.50%,and the detection frame rate per second is 62.6.Compared with the YOLOX algorithm,the mAP@0.5 is 3.45%,and the detection frame rate per second is increased by 0.3.Compared with the original algorithm,the accuracy is improved greatly without loss of performance,and it meets the real-time detection requirements of image and video data are met.
关 键 词:YOLOX 目标检测 落石检测 注意力机制 空间金字塔池化
分 类 号:TP391.413[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.199.9