检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付雅婷 温世明[1,2,3] 杨辉 伍迎节 FU Yating;WEN Shiming;YANG Hui;WU Yingjie(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China;Key Laboratory of Advanced Control and Optimization of Jiangxi Province,East China Jiaotong University,Nanchang 330013,China;State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,East China Jiaotong University,Nanchang 330013,China;Nanjing Signal&Telecommunication Depot,China Railway Shanghai Group Co.,Ltd.,Nanjing 210011,China)
机构地区:[1]华东交通大学电气与自动化工程学院,江西南昌330013 [2]华东交通大学江西省先进控制与优化重点实验室,江西南昌330013 [3]华东交通大学轨道交通基础设施性能监测与保障国家重点实验室,江西南昌330013 [4]中国铁路上海局集团有限公司南京电务段,江苏南京210011
出 处:《铁道学报》2023年第11期98-106,共9页Journal of the China Railway Society
基 金:国家自然科学基金(U2034211,52162048,62003138);江西省技术创新引导类计划(20203AEI009);辽宁省科学技术计划(2022-KF-21-03)。
摘 要:针对三相交流道岔转辙机故障诊断问题,提出一种基于多通道输入和一维卷积神经网络(1DCNN)-长短期记忆神经网络(LSTM)的故障诊断方法。首先使用经验模态分解算法对动作功率信号进行分解,获得若干个尺度特征不同的固有模态函数信号;其次建立基于1DCNN和LSTM的组合故障诊断模型,使用1DCNN提取功率信号中的局部特征,使用LSTM选择性提取局部特征中的长距离特征;然后通过所建模型诊断出道岔转辙机的故障类型,并结合t-分布随机近邻嵌入展示诊断效果;最后与经典的诊断方法进行对比分析。对比实验结果表明:本方法在道岔转辙机故障诊断中具有较高的准确性和稳定性,且具有较好的泛化性。Aiming at the problem of fault diagnosis of three-phase AC switch machines,a fault diagnosis method based on multi-channel input and one-dimensional convolutional neural network(1DCNN)-long-short term memory(LSTM)network was proposed.Firstly,the action power signal was decomposed by empirical mode decomposition algorithm to obtain several intrinsic mode function signals with different scale characteristics.Secondly,a combined fault diagnosis model was built based on the 1DCNN and the LSTM,which used 1DCNN to extract local features in the power signal,and LSTM to selectively extract long-distance features in local features.Finally,the fault type of the switch machine was diagnosed by the model,and the diagnosis effect was demonstrated by t-distributed stochastic neighbor embedding.Simultaneously,the model was compared with the classical diagnosis method.The results of the experiment show that this method has relatively high accuracy,stability as well as good generalization in fault diagnosis of switch machines.
关 键 词:道岔转辙机故障诊断 多通道输入 卷积神经网络 长短期记忆网络 t-分布随机近邻嵌入
分 类 号:U284.92[交通运输工程—交通信息工程及控制]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.144.147