检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李晨阳 郑东健[1,2] LI Chen-yang;ZHENG Dong-jian(College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China)
机构地区:[1]河海大学水利水电学院,江苏南京210098 [2]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098
出 处:《水电能源科学》2023年第11期77-81,共5页Water Resources and Power
基 金:国家自然科学基金项目(52179128)。
摘 要:混凝土坝变形序列中存在的噪声和非线性特征严重影响了大坝变形预测的精度。为此,采用集合经验模态分解(EEMD)对坝体水平位移信号进行分解,挖掘其中有效变形信息;并利用奇异谱分析(SSA)对分解所得高频本征模态分量(IMF)进行特征提取,以减少有效信息的丢失。考虑到效应量与环境量之间复杂的随机性和非线性映射关系,采用极限梯度提升(XGBoost)对降噪后的数据建模预测;考虑到XGBoost超参数对模型预测性能的显著影响,引入全局搜索能力较好的北方苍鹰算法(NGO)对其参数寻优,构建了基于NGO-XGBoost的大坝位移预测模型。计算结果表明,EEMD-SSA能有效地去除大坝位移监测信息中的噪声,NGO-XGBoost模型显著提高了大坝位移预测模型的精度。The noise and nonlinear characteristics in the deformation sequence of concrete dam seriously affect the accuracy of dam deformation prediction.In this paper,ensemble empirical modal decomposition(EEMD) was used to decompose the horizontal displacement signal of the dam to mine the effective deformation information.The singular spectrum analysis(SSA) was used to extract features from the high-frequency eigenmodal components(IMF) obtained from the decomposition to reduce the loss of effective information.Considering the complex stochastic and non-linear mapping relationship between effector and environmental variables,extreme gradient boosting(XGBoost) was used to model the prediction of the noise-reduced data.Considering the significant influence of XGBoost hyperparameters on the prediction performance of the model,the Northern Goshawk algorithm(NGO) with better global search capability was introduced to perform parameter search,and an NGO-XGBoost-based dam displacement prediction model was constructed.The calculation results show that the EEMD-SSA can effectively remove the noise from the dam displacement monitoring information,and the dam deformation prediction model based on NGO-XGBoost can significantly improve the prediction accuracy.
关 键 词:大坝变形预测 集合经验模态分解 奇异谱分析 北方苍鹰算法 极限梯度提升
分 类 号:TV698.1[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.75.212