检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵雪雅 彭春燕[1,2] 张效娟[1,2] ZHAO XueYa;PENG ChunYan;ZHANG XiaoJuan(School of Computer Science,Qinghai Normal University,Xining 810016,China;State Key Laboratory of Tibetan Intelligent Information Processing and Application,Qinghai Normal University,Xining 810016,China)
机构地区:[1]青海师范大学计算机学院,西宁810016 [2]青海师范大学省部共建藏语智能处理及应用国家重点实验室,西宁810016
出 处:《中国科学:技术科学》2023年第11期1939-1952,共14页Scientia Sinica(Technologica)
基 金:青海省重点研发与成果转化项目(编号:2022-GX-155);国家重点研发计划重点专项(编号:2020YFC1523305);国家自然科学基金项目(批准号:62262056)资助。
摘 要:当前图像修复方法大多局限于处理某个单一特定任务,如超分辨率、去噪、着色等,很少有网络模型同时具备处理双重退化的能力.而现存可以解决多重图像退化问题的算法普遍结构复杂、训练时间长、人力成本较大.本文提出一种基于自适应多特征融合的双重退化修复网络(adaptive multi-feature fusion dual degradation restoration network,AMFNet),利用自引导模块(SGM)融合图像的多尺度信息,有效去除了图像中的部分缺陷;使用带有空洞卷积的编码解码器模块巩固图像的语义信息,实现了中间图像的着色;引入带有自适应多特征融合模块(AMF)的中间信息传输机制(ITM)链接以上两大结构,自适应选择保留网络递进过程的图像特征以避免有用信息的丢失.实验结果表明,基于自适应多特征融合的双重图像退化修复网络模型视觉生成效果最优,通过在CelebA和Landscape数据集上的测试分析,其结构相似度(SSIM)与感知图像补丁相似度(LPIPS)优于同类方法,而峰值信噪比(PSNR)则远超同类方法高达5 dB.Most current image restoration methods are limited to a single task,such as super-resolution,denoising,and shading,and few network models can handle dual image degradations.The existing algorithms that can solve the problem of multiple image degradation generally have complex structures,long training times,and large labor costs.This paper proposes a dual image degradation repair network based on an adaptive multi-feature fusion-adaptive multi-feature fusion dual degradation restoration network.The proposed model uses a self-guided module to fuse the multiscale information of an image,effectively removing some defects in the image.An encode-decode module with dilated convolution is used to consolidate the semantic information of the image and complete the coloring of the intermediate image.The intermediate information transmission mechanism with an adaptive multi-feature fusion module is introduced to link the above two structures,which can adaptively preserve the image features of the network progression process to avoid losing useful information.The experimental results show that the dual image degradation repair network model based on adaptive multi-feature fusion has the best visual effect,and through a test analysis on the Celeb A and Landscape datasets,a better learned perceptual image patch similarity and structural similarity index are obtained compared to similar methods,and the peak signal-to-noise ratio is up to 5 d B ahead of comparable methods.
关 键 词:生成对抗网络 图像去噪 图像着色 自适应 神经元调整
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49