基于改进遗传算法的源网荷储协同控制方法  被引量:5

Cooperative control method based on improved genetic algorithm for source network load storage

在线阅读下载全文

作  者:阙凌燕 蒋正威 杨力强 卢敏 QUE Lingyan;JIANG Zhengwei;YANG Liqiang;LU Min(College of Computer and Information,Hohai University,Nanjing 210024,Jiangsu,China;Dispatch and Control Center,State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 315010,Zhejiang,China;Dispatch and Control Center,State Grid Huzhou Power Supply Co.,Ltd.,Huzhou 313000,Zhejiang,China)

机构地区:[1]河海大学计算机与信息学院,江苏南京210024 [2]国网浙江省电力有限公司调控中心,浙江杭州315010 [3]国网湖州供电公司调控中心,浙江湖州313000

出  处:《沈阳工业大学学报》2023年第6期612-618,共7页Journal of Shenyang University of Technology

基  金:浙江省自然科学基金项目(2018JJ2064)。

摘  要:针对现有大多数方法难以兼顾系统经济性与新能源消纳的问题,提出一种基于改进遗传算法的源网荷储协同控制方法。该方法综合考虑源网荷储系统的特性,构建了以运行成本和弃风弃光量最小化为目标的模型。通过采用混沌优化算法来对遗传算法进行改进,进而设计一种基于双层嵌套结构及改进遗传算法相结合的高效方法用于目标函数的求解,以得到最佳的系统控制模式。基于IEEE33节点系统对所提方法进行实验论证的结果表明,优化后系统的弃风弃光量和运行成本仅为0.872 MW及2.330万元,说明了该方法可有效减少系统的运行成本,并提高新能源的消纳。Aiming at the problem that most existing methods are difficult to give consideration for system economy and new energy consumption,a cooperative control method based on improved genetic algorithm for source network load storage was proposed.Considering the characteristics of source network load storage system,a target model was constructed to minimize the operating cost and the abandonment of wind and light.By using chaos optimization algorithm to improve the genetic algorithm,an efficient method based on the double-layer nested structure and the improved genetic algorithm was designed to solve the objective function for the best system control mode.Based on the IEEE33 node system,the experimental demonstration of the as-proposed method shows that the abandonment of wind and light and the operating cost of the optimized system are only 0.872 MW and 23300 yuan,respectively,showing that the optimized system can effectively reduce the system operation cost and enhance the consumption of new energy.

关 键 词:源网荷储 协同控制 改进遗传算法 双层嵌套结构 混沌优化算法 运行成本最小化 弃风弃光量最小化 新能源消纳 

分 类 号:TM761[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象