检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于彦鹏 孟玉迪 王筱薇 兰莹[2] 范勤勤 YU Yan-Peng;MENG Yu-Di;WANG Xiao-Wei;LAN Ying;FAN Qin-Qin(Logistics Research Center,Shanghai Maritime University,Shanghai 201306,China;Logistics Engineering College,Shanghai Maritime University,Shanghai 201306,China)
机构地区:[1]上海海事大学物流研究中心,上海201306 [2]上海海事大学物流工程学院,上海201306
出 处:《计算机系统应用》2023年第11期222-231,共10页Computer Systems & Applications
基 金:上海市浦江人才计划(22PJD030);国家自然科学基金(61603244);国家自然科学基金山东联合基金(U2006228)。
摘 要:由于微种群教与学优化算法的种群规模较小,故其种群多样性很难维持.为提高微种群教与学优化算法的搜索性能,提出了一种基于多源基因学习的微种群教与学优化算法(micro-population teaching-learning-based optimization based on multi-source gene learning,MTLBO-MGL).在MTLBO-MGL算法中,将教阶段和学阶段根据随机选择策略来对个体进行基因水平上的进化操作;并从基因层面上对种群多样性进行检测和使用稀疏谱聚类方法对种群的每个维度进行聚类.然后,根据多样性检测和聚类结果,选择不同的进化策略来提高所提算法的搜索性能.在28个测试函数上,通过将所提算法与其他4种微种群进化算法作对比,证明了所提算法的整体性能要显著好于所对比的4种算法.本文还将所提算法应用于无人机三维路径规划问题,结果表明MTLBO-MGL算法能够在该问题上取得较好结果.As the population size of the micro-population teaching and learning optimization algorithm is small,it is hard to maintain its population diversity.To improve the search performance of the micro-population teaching-learning-based optimization algorithm,a micro-population teaching-learning-based optimization algorithm based on multi-source gene learning(MTLBO-MGL)is proposed.In MTLBO-MGL,the teaching stage and the learning stage are used to evolve individuals at the gene level via the random selection strategy.Moreover,the population diversity is detected at the gene level and the sparse spectral clustering is utilized to cluster the population on each dimension.Different evolutionary strategies are selected to improve the search performance of the proposed algorithm based on the diversity detection result and the clustering result.The performance of the proposed algorithm is compared with the other four micro-population evolutionary algorithms on 28 test functions.The simulation results prove that the overall performance of the proposed algorithm is significantly better than the other four compared algorithms.The proposed algorithm is also applied to solve the UAV 3D path planning problem,and the results show that MTLBO-MGL can achieve better results on this scenario.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170