检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彬 董雅倩 徐建民 ZHANG Bin;DONG Yaqian;XU Jianmin(School of Cyber Security and Computer,Hebei University,Baoding 071000,China)
机构地区:[1]河北大学网络空间安全与计算机学院,河北保定071000
出 处:《河北大学学报(自然科学版)》2023年第6期653-664,共12页Journal of Hebei University(Natural Science Edition)
基 金:河北省社会科学基金资助项目(HB21TQ005)。
摘 要:针对现有基于用户正负偏好的电影推荐方法未充分考虑用户情感信息、用户正负偏好表示不够准确以及推荐效果不够理想的问题,提出一种利用评论中蕴含的用户情感改进其正负偏好,基于改进偏好实现电影推荐的方法.首先,构建电影领域情感词典,利用该词典实现对评论数据的挖掘与量化,得到用户评论的情感得分;然后,综合考虑用户的评分和评论情感得分计算用户对电影的喜好度,从而生成用户的正、负向偏好电影集合,并基于这2个集合构建用户的正、负向偏好特征向量,挖掘得到蕴含评论情感的用户正负偏好;最后,利用候选电影与用户正、负向偏好特征的相似度计算用户对候选电影的最终评分,实现电影推荐.基于豆瓣数据集的实验结果表明,本文方法的各项指标相对于传统方法有一定提升,其中F1、MAE和MAPE指标分别提升6.10%、3.32%、11.67%.In the existing movie recommendation methods based on users positive and negative preferences.The users sentiment information was not fully considered,the users positive and negative preferences was not accurate enough,and the recommendation effect was not ideal.In this paper,a method is proposed to improve users positive and negative preferences by using users emotions contained in reviews,and the movie recommendation is realized based on the new preferences.Firstly,the sentiment dictionary in the field of movie was constructed,which is used to realize the mining and quantification of the review data and obtain the sentiment score of user reviews.Secondly,the user s preference degree for movies was calculated in order to generate the user s positive and negative preference movie sets by considering the user s rating and the comment sentiment score comprehensively,then according to the two sets,the user s positive and negative preference feature vectors were constructed,and the user s positive and negative preferences containing user sentiment were mined.Finally,the similarity,which is between the candidate movie and the user s positive and negative preference features,was used to calculate the user s final rating for the candidate movie,and the movie recommendation was realized.Compared with traditional methods,the experimental results based on Douban dataset show that the proposed method has certain improvements over the traditional methods,and the indexes of F1,MAE and MAPE are improved by 6.10%,3.32%and 11.67%,respectively.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.19.6