检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田苗苗 刘俊利[1] TIAN Miaomiao;LIU Junli(School of Science,Xi'an Polytechnic University,Xi'an 710048,China)
出 处:《沈阳大学学报(自然科学版)》2023年第6期544-550,共7页Journal of Shenyang University:Natural Science
基 金:国家自然科学基金资助项目(11801431);陕西省自然科学基础研究计划项目(2021JM-445)。
摘 要:为了研究禽流感在人、家禽以及环境中的传播动态,建立了一个SI-V-SIR传染病模型。利用微分方程基本定理证明了模型解的有界性和非负性。给出了模型的基本再生数R_(0),并分析了模型的阈值动力学:当R_(0)<1时,无病平衡点E_(0)全局渐近稳定;当R_(0)>1时,地方病平衡点E*存在,且是局部渐近稳定的。当家禽因病死亡率可以忽略时,证明了地方病平衡点的全局渐近稳定性。通过对模型进行数值分析,研究了控制禽流感传播的有效措施。In order to study the transmission dynamics of avian influenza in humans,poultry and the environment,an SI-V-SIR infectious disease model was established.Firstly,the boundedness and nonnegativity of the solution of the model were proved using the basic theorems of differential equations.Secondly,the basic reproduction number R_(0)of the model was given,and the threshold dynamics of the model were analyzed:if R_(0)<1,the disease-free equilibrium E_(0)was globally asymptotically stable;if R_(0)>1,the endemic equilibrium E*existed and was locally asymptotically stable.The global asymptotic stability of the endemic equilibrium was proved when the disease-induced death rate of domestic poultry could be ignored.Numerical analyses of the model were carried out to explore effective control measures for the spread of avian influenza.
关 键 词:禽流感 SI-V-SIR传染病模型 全局渐近稳定性 基本再生数 偏秩相关系数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.132.48