检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨程博[1] YANG Cheng-bo(School of Mathematics,Jilin University,Changchun,Jilin 130012,China)
出 处:《教育教学论坛》2023年第47期145-148,共4页Education And Teaching Forum
基 金:2021年度吉林大学本科教学改革研究项目“课程思政在提升人才综合素质方面的重要性研究”(2021XYB055)。
摘 要:作为大数据和人工智能的重要数学基础之一,概率论在支持决策方面的重要性毋庸置疑。但当前的概率论教学大都基于概率的频率解释,贝叶斯解释往往容易被忽略,导致学生很难理解条件概率和贝叶斯定理的内涵。因此,在概率教学中强调对概率解释的认识,以及加深对概率内涵不同维度的理解是十分重要的。基于此,以概率解释的历史演进为理论视角,探究概率解释的形成和转变过程,为今后进一步将该理论成果融入概率论的教学实践夯实基础。As one of the important mathematical foundations of big data and artificial intelligence,the importance of probability theory in supporting decision making is unquestionable.However,current probability theory teaching is mostly based on frequency interpretation of probability,and Bayesian interpretation is often easily ignored.It is difficult for students to understand the meaning of conditional probability and Bayes’theorem.Therefore,it is important to emphasize the awareness of probability interpretation in probability teaching,as well as to deepen the understanding of different dimensions of probability connotation.Based on this,this paper will take the historical evolution of probability explanation as a theoretical perspective to explore the formation and transformation process of probability explanation,and to lay a solid foundation for further integrating the theoretical results into the teaching practice of probability theory in the future.
分 类 号:G642.0[文化科学—高等教育学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28