检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Linchu Xu Chen Yang Zhonghua Cheng Qihang Huang Shizhe Zhang Cheng Qian Yaozu Liao
出 处:《Chinese Journal of Chemistry》2023年第19期2518-2524,共7页中国化学(英文版)
基 金:support from the National Natu-ral Science Foundation of China(52073046,52203006);the Na-tional Key Research and Development Program of China(2022YFB3807100,2022YFB3807102,2022YFB3807103);the Pro-gram of Shanghai Academic Research Leader(21XD1420200);the Chang Jiang Scholar Program(Q2019152);the Natural Science Foundation of Shanghai(23ZR1401100);the Shanghai Pujiang Program(21PJ1400300);the Fundamental Research Funds for the Central Universities(2232022D-06).
摘 要:Conjugated microporous polymers (CMPs) featuring extended π-structures, large specific surface area and tailor-made functionalities are a class of promising organic photocatalysts for hydrogen evolution reaction (HER) from water. However, the photocatalytic activities of most CMPs are severely hindered by slow charge transfer rate and fast charge recombination process. Herein, we develop a strategy for the synthesis of donor-acceptor CMPs through nickel(0)-catalyzed Yamamoto cross-coupling of 3,6-dibromo-9-(4-bromophenyl)carbazole (CZ) with 5,5'-dibromo-2,2'-bipyridine (DBPy) for efficient HER from water. The PCZN-4 prepared with a 2 : 3 stoichiometric ratio of CZ to DBPy exhibited the highest photocatalytic hydrogen evolution rate of 7160 μmol·g^(–1)·h^(–1), which was nearly equal to 179 times and 143 times that of PCZN-1 (40 μmol·g^(–1)·h^(–1)) and PCZN-6 (50 μmol·g^(–1)·h^(–1)) obtained by Yamamoto homocoupling of CZ and DBPy, respectively. Compared to the homocoupling counterparts, the enhanced photocatalytic activity of PCZN-4 results from improved separation efficiency of charge carriers. Interestingly, the photocatalytic H2 evolution performance of PCZN-4 could be further improved up to 17080 μmol·g^(–1)·h^(–1) by adjusting pH of the aqueous solution. This work offers a novel approach for improving photocatalytic efficiency by tuning the chemical structures and surrounding microenvironment of the polymer backbone.
关 键 词:CARBAZOLE BIPYRIDINE DONOR-ACCEPTOR MICROENVIRONMENT Conjugated polymers Photocatalytic hydrogen evolution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.255.7