基于数字孪生和智能感知的虚拟分流技术研究  被引量:5

Research on virtual shunt technology based on digital twinning and intelligent sensing

在线阅读下载全文

作  者:孙梦琪 倪广林[1] 张培[1] SUN Mengqi;NI Guanglin;ZHANG Pei(The First Affiliated Hospital of Hebei North University,Zhangjiakou 075000,China)

机构地区:[1]河北北方学院附属第一医院,河北张家口075000

出  处:《电子设计工程》2023年第24期65-69,共5页Electronic Design Engineering

基  金:张家口市社会科学界联合会计划项目(2022056)。

摘  要:针对智能分诊技术难以处理海量数据且存在主观性较强的问题,文中基于数字孪生技术理论和智能感知算法提出了一种虚拟的医疗机构分诊模型。该模型由文本分类算法及图像分类算法组成,其中文本分类算法将Word2Vec与VSM算法相结合,大幅提升了生成文本词向量的效率和质量,同时还具有消歧作用。而图像分类算法采用CNN及RBM算法来进行特征提取和分类,且为了减小算法的依赖性,通过注意力机制输出诊断结果,并利用Softmax层对数据加以融合。实验结果表明,所提算法可以有效、准确地输出诊断结果,相较于对比算法,其文本分类准确率平均提升了约3.5%,图像分类的F1值则平均提升约3%,说明该算法具有良好的性能及应用价值。In view of the shortcomings of intelligent triage technology,which is difficult to handle massive data and has strong subjectivity,this paper proposes a virtual triage model for medical institutions based on digital twin technology theory and intelligent perception algorithm.The model is composed of text classification algorithm and image classification algorithm.The text classification algorithm combines Word2Vec and VSM algorithm,which greatly improves the efficiency and quality of the generated text word vector,and also has disambiguation effect.The image classification algorithm uses CNN for feature extraction and RBM for feature classification.In order to reduce the dependence of the algorithm,the diagnosis results are output through the attention mechanism,and the data is fused using the Softmax layer.The experimental results show that the proposed algorithm can effectively and accurately output the diagnosis results,the text classification accuracy of the algorithm is about 3.5%higher than that of the comparison algorithm,and the text classification F1 value is about 3%higher,which shows that the algorithm has good performance and engineering application value.

关 键 词:数字孪生 Word2Vec 卷积神经网络 注意力机制 虚拟诊断技术 图像分类技术 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] TN929.5[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象