纯电动两挡AMT 综合性换挡规律研究与优化  被引量:1

Research and optimization of comprehensive shift law of pure electric two-gear AMT

在线阅读下载全文

作  者:刘文光[1] 孙圳 LIU Wenguang;SUN Zhen(School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212000,Jiangsu,China)

机构地区:[1]江苏大学汽车与交通工程学院,江苏省镇江市212000

出  处:《农业装备与车辆工程》2023年第12期17-22,共6页Agricultural Equipment & Vehicle Engineering

基  金:国家重点研发计划(2019YFB1600500)。

摘  要:在保证车辆动力性的前提下以降低整车能量消耗为目标,针对纯电动乘用车的综合性换挡规律进行优化。以搭载无离合器的两挡自动变速器(AMT)为研究对象,制定40%加速踏板开度为临界点的传统综合性换挡规律。通过建立换挡点车速为优化变量、能耗和加速度为优化目标的综合优化模型,并采用改进免疫粒子群算法对传统综合性换挡规律进行优化,得到新的综合性换挡规律;在Simulink中搭建该两挡AMT换挡规律的仿真模型,对优化前后的综合性换挡规律在WLTC工况下进行仿真验证,仿真结果表明,在保证动力性的同时减少了8.825%的能量消耗,可为纯电动车换挡规律的制定提供一种新的思路。In order to reduce the energy consumption of the whole vehicle under the premise of ensuring the power of the vehicle,the comprehensive shifting law of pure electric passenger vehicles was optimized.Taking the clutchless two-speed automatic transmission(AMT)as the research object,the traditional comprehensive shift rule of 40%accelerator pedal opening as the critical point was established.By establishing a comprehensive optimization model with speed as optimization variable,energy consumption and acceleration as optimization objectives,the improved immune particle swarm optimization algorithm was used to optimize the traditional comprehensive shifting law to get a new comprehensive shifting law.A simulation model of the shifting law of the two gears AMT was built in Simulink,and the comprehensive shifting law before and after optimization was simulated and verified in the WLTC working condition.The simulation results showed that the power performance was guaranteed while energy consumption was reduced by 8.825%.The research results provide a new way of thinking for the formulation of shifting rules of pure electric vehicles.

关 键 词:纯电动汽车 AMT 综合性换挡规律 改进免疫粒子群算法 

分 类 号:U469.72[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象