检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庄丽丽[1]
机构地区:[1]浙江农林大学数学与计算机科学学院,浙江杭州310000
出 处:《南方农机》2024年第1期38-42,61,共6页
摘 要:【目的】分析预测土壤墒情变化趋势,总结影响土壤墒情的因素,为土壤改良提供参考。【方法】通过对不同深度土壤墒情随时间呈现的动态变化进行研究,针对研究区的具体气象条件和土壤情况,应用时间序列模型和深度学习方法,探究BAG土壤墒情预测模型的预测性能。通过对土壤深度、数据和环境因子与预测模型的相关关系的分析,证明该模型的预测精度。【结果】1)深度与预测性能的关联:研究区内不同深度的土壤含水量预测误差的平均绝对值都较为平稳,均在1%以下,不同深度的土壤含水量不会直接影响BAG的预测性能。2)墒情数据对预测模型的影响:研究区内1095条、729条和364条数据作为输入数据进行预测,序列长度为364时,各个深度预测精度较好。3)环境因子对预测模型的影响:预测精度并不随着相关性的强弱而相应变化,阈值为0.3以上的环境因子预测精度最好。【结论】在一定的序列长度和环境因子数量下,BAG的预测性能较高。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49