基于LSSVM与NSGA-Ⅱ的反硝化-Anammox工艺协同优化研究  

Research on collaborative optimization of denitrification-Anammox process based on LSSVM and NSGA-Ⅱ

在线阅读下载全文

作  者:段佩 张锋 崔宏志[1] 杜妍 DUAN Pei;ZHANG Feng;CUI Hongzhi;DU Yan(Shangluo vocational and Technical College,Weinan 726000,Shaanxi China;Shaanxi Provincial Environmental Investigation and Assessment Center,Xi’an 710061,China)

机构地区:[1]商洛职业技术学院,陕西渭南726000 [2]陕西省环境调查评估中心,陕西西安710061

出  处:《粘接》2023年第12期131-134,共4页Adhesion

基  金:商洛职业技术学院课题(项目编号:JYKT202302)。

摘  要:针对反硝化-Anammox工艺中整体脱氮除碳能力较低的问题,提出基于LSSVM与NSGA-Ⅱ构建废水脱氮除碳处理的多目标优化模型。利用基于LSSVM的软测量方法进行脱氮除碳结果的相关变量的预测,通过NSGA-Ⅱ算法求解反硝化-Anammox工艺的全局最佳进水条件的解集。经仿真实验证明,通过LSSVM预测的COD_(rem)等相关变量与真实值的误差较小,基本满足预测需求。按照优化模型求解出的帕累托解集进行废水脱氮除碳处理,在NH_(3)-N的去除率达到90.67%的同时,对TN、COD的去除率分别为80.21%、85.73%,氮、碳2种元素的整体去除率为85.54%,能够满足反硝化-Anammox工艺协同优化的需求。To solve the problem of low overall nitrogen and carbon removal capacity in denitrification-Anammox process,a multi-objective optimization model for wastewater nitrogen and carbon removal was proposed based on LSSVM and NSGA-Ⅱ.The LSSVM-based soft measurement method was used to predict the relevant variables of the denitrification and carbon removal results,and the solution set of the global optimal influent conditions of the denitrification-Anammox process was solved by the NSGA-II algorithm.The simulation experiment showed that the error between COD_(rem)and other related variables predicted by LSSVM and the real value was small,which basically met the prediction requirements.According to the Pareto solution set solved by the multi-objective optimization model,the wastewater was treated with nitrogen and carbon removal,the removal rate of NH_(3)-N was 90.67%,while the removal rate of TN and COD was 80.21%and 85.73%,respectively.The overall removal rate of nitrogen and carbon was 85.54%,which could meet the requirements of collaborative optimization of denitrification-Anammox process.

关 键 词:LSSVM NSGA-Ⅱ算法 厌氧氨氧化工艺 反硝化过程 协同优化 

分 类 号:TQ340.9[化学工程—化纤工业] X701[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象