检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石屹然[1] 齐金伟 曲思凝 潘向阳 符麟 SHI Yi-ran;QI Jin-wei;QU Si-ning;PAN Xiang-yang;FU Lin(College of Communication Engineering,Jilin University,Changchun 130022,China)
出 处:《吉林大学学报(工学版)》2023年第10期3007-3013,共7页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金重大项目(51835006)。
摘 要:噪声背景下的信号处理问题是该领域的热点问题,但在实际工况中极难直接获得α噪声的特征指数的相关信息,这使得分数低阶统计算法的应用变得尤为困难。针对上述问题,本文提出了一种基于α稳定分布叠加性质以及几何功率的特征指数估计方法。首先利用叠加性质确定了多个独立同分布的α稳定分布变量与其和分布变量的关系,然后利用其原变量以及与变量几何功率间的特点实现对特征指数的估计。实验结果表明,该算法不需要获取特征指数的范围,在0~2范围内均可对其进行准确估计,均方根误差最大约为0.1,在对海杂波数据进行估计时偏差仅为0.02,可以为α噪声下的信号处理问题提供先验信息。Signal processing in the background ofαnoise is a hot issue in this field,but it is very difficult to directly obtain the relevant information of characteristic exponent ofαnoise in actual working conditions,which makes the application of fractional low-order statistical algorithm become particularly difficult.An estimation method based on the plus property ofα-stable distribution and geometric power was proposed regarding the issue above.Firstly,the plus property is used to determine the relationship between several independent variables with the sameα-stable distribution and the distribution of their sum.Then the characteristic exponent is estimated by using the characteristics the geometric power between the original variables and their sum-distribution variable.The experimental results show that this algorithm does not need to obtain the range of the characteristic exponent in advance.And it can be accurately estimated in the range of 0—2,the maximum root-mean-square error of the estimation result is only about 0.1 and the deviation is only 0.02 when it is estimated the sea clutter data,which can provide a priori information under the signal processing problem based onαnoise.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222