基于几何功率的α噪声的特征指数估计方法  

Estimation method based on geometric power for characteristic exponent ofαnoise

在线阅读下载全文

作  者:石屹然[1] 齐金伟 曲思凝 潘向阳 符麟 SHI Yi-ran;QI Jin-wei;QU Si-ning;PAN Xiang-yang;FU Lin(College of Communication Engineering,Jilin University,Changchun 130022,China)

机构地区:[1]吉林大学通信工程学院,长春130022

出  处:《吉林大学学报(工学版)》2023年第10期3007-3013,共7页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金重大项目(51835006)。

摘  要:噪声背景下的信号处理问题是该领域的热点问题,但在实际工况中极难直接获得α噪声的特征指数的相关信息,这使得分数低阶统计算法的应用变得尤为困难。针对上述问题,本文提出了一种基于α稳定分布叠加性质以及几何功率的特征指数估计方法。首先利用叠加性质确定了多个独立同分布的α稳定分布变量与其和分布变量的关系,然后利用其原变量以及与变量几何功率间的特点实现对特征指数的估计。实验结果表明,该算法不需要获取特征指数的范围,在0~2范围内均可对其进行准确估计,均方根误差最大约为0.1,在对海杂波数据进行估计时偏差仅为0.02,可以为α噪声下的信号处理问题提供先验信息。Signal processing in the background ofαnoise is a hot issue in this field,but it is very difficult to directly obtain the relevant information of characteristic exponent ofαnoise in actual working conditions,which makes the application of fractional low-order statistical algorithm become particularly difficult.An estimation method based on the plus property ofα-stable distribution and geometric power was proposed regarding the issue above.Firstly,the plus property is used to determine the relationship between several independent variables with the sameα-stable distribution and the distribution of their sum.Then the characteristic exponent is estimated by using the characteristics the geometric power between the original variables and their sum-distribution variable.The experimental results show that this algorithm does not need to obtain the range of the characteristic exponent in advance.And it can be accurately estimated in the range of 0—2,the maximum root-mean-square error of the estimation result is only about 0.1 and the deviation is only 0.02 when it is estimated the sea clutter data,which can provide a priori information under the signal processing problem based onαnoise.

关 键 词:信号处理 α噪声 特征指数 叠加性质 几何功率 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象