检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任禹潞 王大殿 齐智暄 REN Yulu;WANG Dadian;QI Zhixuan(School of Computer Engineering,Jiangsu University of Technology,Changzhou 213001,China)
机构地区:[1]江苏理工学院计算机工程学院,江苏常州213001
出 处:《现代信息科技》2023年第21期140-144,共5页Modern Information Technology
基 金:江苏省大学生创新创业项目(202211463065Y)。
摘 要:文章基于卷积神经网络的车道线检测方法,提出了一种优化的车道检测方案,利用残差网络与简化的Transformer优化神经网络,首先将Transformer模型用作编码器或解码器,学习输入序列之间的关系,提高神经网络的性能,然后在编码器中增加残差层,用以更好地处理边缘与相似信息并提取低分辨率特征,最后设计一个主干架构用于整合优化内容并对优化后的模型进行训练。实验结果表明,优化后的模型在TuSimple验证集中的预测一致性超过了90%,并对多种干扰状况表现出良好的适应性。This paper proposes an optimized lane detection scheme based on convolutional neural networks,which utilizes residual networks and simplified Transformers to optimize the neural network.Firstly,the Transformer model is used as an encoder or decoder to learn the relationships between input sequences and improve the performance of the neural network.Then,a residual layer is added to the encoder to better process edge and similar information and extract low resolution features.Finally,design a backbone architecture to integrate optimized content and train the optimized model.The experimental results show that the predicted consistency of the optimized model in the TuSimple validation set exceeds 90%and exhibits good adaptability to various interference situations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147