基于CNN电动城市客车进站驾驶风格识别研究  

Driving Style Recognition of Electric City Bus Entering Stations Based on CNN

在线阅读下载全文

作  者:赵登峰 钟玉东 刘朝辉 李振营 侯俊剑 ZHAO Dengfeng;ZHONG Yudong;LIU Zhaohui;LI Zhenying;HOU Junjian(Mechanical and Electrical Engineering Institute,Zhengzhou University of Light Industry,Zhengzhou 450002,Henan,China;Technology Research Institute,Yutong Bus Co.,Ltd.,Zhengzhou 450016,Henan,China)

机构地区:[1]郑州轻工业大学机电工程学院,河南郑州450002 [2]宇通客车股份有限公司技术研究中心,河南郑州450016

出  处:《重庆交通大学学报(自然科学版)》2023年第12期121-128,136,共9页Journal of Chongqing Jiaotong University(Natural Science)

基  金:国家自然科学基金资助项目(62073298)。

摘  要:电动城市客车驾驶员的驾驶风格对城市公共交通安全有重要影响。为识别驾驶员的驾驶风格,利用驾驶员自然驾驶电动城市客车进站过程的车载CAN数据,采用由卷积层和池化层组成的特征提取网络对多通道特征数据进行信息深度融合和特征自动提取,无缝输出给全连接神经网络进行进站驾驶风格识别,构建出电动城市客车驾驶员进站驾驶风格识别模型。研究表明,采用建立的模型可以有效融合进站过程中驾驶行为和车辆运行状态对应时序数据并自动提取驾驶行为高阶特征,实现电动城市客车驾驶员进站驾驶风格的有效识别,准确率达到98.2%。研究成果有助于识别出激进型驾驶风格的驾驶员,以便针对性开展驾驶安全教育,进而降低驾驶员致因的电动城市客车交通事故。The driver's driving style of electric city bus has an important impact on the safety of urban public transport.In order to identify the driving style of the driver,a feature extraction network composed of convolutional layer and pooling layers was used to deeply fuse and automatically extract multi-channel feature data,by using the onboard CAN data in the process of the driver's natural driving electric city buses entering stations.It seamlessly output to fully connected neural networks for inbound driving style recognition,and an electric city bus driver inbound driving style recognition model was constructed.The research shows that the proposed model can effectively integrate the corresponding time series data of driving behavior and vehicle operation status during the entry process,and automatically extract higher-order features of driving behavior,achieving effective recognition of the driving style of electric city bus drivers entering the station,with an accuracy rate of 98.2%.The research results help to identify drivers with aggressive driving styles,so as to carry out targeted driving safety education and thereby reduce driver-induced electric city bus traffic accidents.

关 键 词:交通运输工程 驾驶风格 卷积神经网络(CNN) CAN数据 电动城市客车 驾驶安全 

分 类 号:U471.3[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象