检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾文娟[1] 丁灿 魏金 阴艳超[1] 刘孝保[1] GU Wenjuan;DING Can;WEI Jin;YIN Yanchao;LIU Xiaobao(College of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学机电工程学院,云南昆明650500
出 处:《光学精密工程》2023年第24期3606-3617,共12页Optics and Precision Engineering
基 金:国家自然科学基金资助项目(No.52065033);云南省科技厅重大专项资助项目(No.2022AG050002-4)。
摘 要:针对在低光照环境下拍摄的图像受光照强度的影响而导致图像质量差的问题,本文提出了基于双边滤波的MSR与AutoMSRCR算法融合的低光照图像增强算法。首先,在原始低光照图像的HSV颜色空间中针对V分量使用基于双边滤波MSR算法对亮度通道进行增强,得到保留原有色彩信息的亮度增强图像。然后,将此初始亮度增强图像运用CLAHE算法基于LAB颜色空间进行亮度通道细节增强,得到细节增强的图像。最后,采用AutoMSRCR算法对原始低光照图像进行处理,并与细节增强图像进行加权融合得到最终的增强图像。以UCIQE,AG,SD,IE为评价指标,将经过该算法增强的图像与MSR算法,MSRCR算法,CLAHE算法,改进GAMMA算法等进行比较。结果表明,使用该图像增强算法处理的图像效果最佳,UCIQE达到了0.4721,AG达到了12.6742,SD达到了0.2632,IE达到了7.6379。增强后的图像色彩信息更加丰富,图像更加清晰,图像对比度更好,图像的边缘纹理信息保留更完整,图像质量更高,本研究为低光照图像增强提供了一种可行方法。Aiming at the problem that images taken in low-light environments are affected by the strength of illumination,which leads to poor image quality,this study proposes a low-light image enhancement al⁃gorithm based on the fusion of bilateral filtering MSR and AutoMSRCR.First,the brightness of the origi⁃nal low-light image is enhanced using the MSR algorithm based on bilateral filtering in HSV color space.As a result,a brightness-enhanced image with the original color information is obtained.Then,the CLA⁃HE algorithm is used to enhance the details of the brightness channel based on the Lab color space,and a detail-enhanced image is obtained.Finally,the AutoMSRCR algorithm is used to process the original lowlight image and perform weighted fusion with the detail-enhanced image to obtain the final enhanced im⁃age.Using UCIQE,AG,SD,and IE as evaluation indexes,the proposed algorithm outperformed the MSR,MSRCR,CLAHE,and GAMMA algorithms.The results show that the proposed algorithm opti⁃mized image quality with UCIQE,AG,SD,and IE reaching values of 0.4721,12.6742,0.2632,and 7.6379,respectively.The obtained image contains more color information,is clearer,the image contrast is natural look,and the edge texture information of the image is more complete.That is,images enhanced by this algorithm are of the highest quality.This study provides a feasible method for low-light image en⁃hancement.
关 键 词:低光照图像 图像增强 双边滤波 细节增强 加权融合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15