面向智能制造系统级人才培养的实训平台建设  被引量:4

Construction of Platform for Intelligent Manufacturing System-level Talent Training

在线阅读下载全文

作  者:王亮[1] 唐堂 于颖[1] 陈云 WANG Liang;TANG Tang;YU Ying;CHEN Yun(School of Mechanical Engineering,Tongji University,Shanghai 201804,China;Shanghai Xipu Intelligent System Co.,Ltd.,Shanghai 201306,China)

机构地区:[1]同济大学机械与能源工程学院,上海201804 [2]上海犀浦智能系统有限公司,上海201306

出  处:《实验室研究与探索》2023年第10期249-253,共5页Research and Exploration In Laboratory

基  金:同济大学2021课程思政课题(KCSZ-B-20210312)。

摘  要:在分析智能制造时代人才需求基础上,建立了系统级人才立方体模型,指出智能制造系统级人才需要掌握产品的全生命周期,并熟悉具有较高复杂程度的单元或系统。实例阐述了面向智能制造系统级人才培养的实训平台建设方案,以国家智能制造系统标准架构为参考,包含智能制造生产线和数字孪生两部分,由网络层、设备层、控制层、运营管理层以及智能应用层组成。实践表明,该实训平台可满足智能制造工程专业对人才的培养需求,能够用于各类智能制造相关比赛训练。In order to construct the platform to meet the system-level talent training of intelligent manufacturing,a system-level talent cube model is established by analyzing the talent demand in the era of intelligent manufacturing.It is proposed that intelligent manufacturing system-level talents need to master the entire life cycle of the product and familiar with the unit or system with a higher degree of complexity.Under the guidance of this model,the construction process of a platform example for intelligent manufacturing system-level talent training is illustrated in detail.The platform is based on the national intelligent manufacturing system standard architecture.It includes intelligent manufacturing production line and corresponding digital twin,and consists of network layer,equipment layer,control layer,operation management layer and intelligent application layer.Practice has proved that the training platform can meet the talent training requirements of the major of intelligent manufacturing engineering.It can be applied to various types of intelligent manufacturing-related competition training.

关 键 词:实训平台 智能制造 系统级人才 

分 类 号:G482[文化科学—教育学] TP278[文化科学—教育技术学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象