检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:芦碧波[1] 周允 李小军[2] 谷亚楠 王文轲 LU Bibo;ZHOU Yun;LI Xiaojun;GU Yanan;WANG Wenke(School of Computer Science and Technology,Henan University of Technology,Jiaozuo 454000,China;School of Energy Science and Engineering,Henan University of Technology,Jiaozuo 454000,China)
机构地区:[1]河南理工大学计算机科学与技术学院,河南焦作454000 [2]河南理工大学能源科学与工程学院,河南焦作454000
出 处:《煤炭技术》2023年第10期200-203,共4页Coal Technology
摘 要:针对现有煤矿井下环境复杂、监控视频模糊、人员安全状况检测困难和检测算法参数量大、运行速度慢问题,提出了一种轻量化的YOLOv5煤矿井下检测算法。首先,将轻量化ShuffleNetv2作为主干网络,减少了模型计算参数量,降低了网络的复杂度;接着引入一种改进后的注意力机制F-CBAM模块,使通道注意力和空间注意力直接学习输入的特征图,增加对目标物体的关注度。模型最终的检测精度为98.6%,高于经典网络性能,降低了对硬件的需求,提高了井下人员识别的实时性。Aiming at the complex underground environment of existing coal mines, blurred surveillance video, difficulty in detecting personnel safety conditions, detection algorithm with a large number of parameters and slow running speed, a lightweight YOLOv5 coal mine underground detection algorithm is proposed. First, the lightweight ShuffleNetv2 is used as the backbone network, which reduces the amount of model calculation parameters and reduces the complexity of the network;then an improved attention mechanism F-CBAM module is introduced, which enables channel attention and spatial attention to directly learn the input feature map and increase the attention to the target object. The final detection accuracy of the model is 98.6%, which is higher than the performance of the classical network,which reduces the demand for hardware and improves the real-time performance of underground personnel identification.
关 键 词:煤矿井下 轻量化 YOLOv5 ShuffleNetv2 注意力机制
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147