受限通信下线性系统辨识的多敏感器分配研究  

Multi-Sensor Allocation Strategy for Linear System Identification Under Constrained Communication Resources

在线阅读下载全文

作  者:蔺凤琴 梁栋 殷庆虎 于鹏 LIN Fengqin;LIANG Dong;YIN Qinghu;YU Peng(School of Automation and Electrical Engineering,University of Science and Technology Beijing,Beijing 100083,China;No.91991 of the PLA,Zhoushan 316001,China;Key Laboratory of Knowledge Automation for Industrial Processes,Ministry of Education,Beijing 100083,China)

机构地区:[1]北京科技大学自动化学院,北京100083 [2]中国人民解放军91991部队,舟山316001 [3]工业过程知识自动化教育部重点实验室,北京100083

出  处:《空间控制技术与应用》2023年第6期104-112,共9页Aerospace Control and Application

基  金:国家自然科学基金资助项目(62173030);北京市自然科学基金资助项目(4222050)。

摘  要:在网络化环境下对线性系统辨识中的多敏感器分配策略进行研究.为节约通信带宽,引入了二值量化机制;为解决数据传输时面临的冗余和通道拥堵问题,提出一种差分驱动的事件通信机制,并证明这种机制具有完全信息复原能力,同时给出其通信率.基于接收端的可用数据,构造各个有限脉冲响应系统的辨识算法,分析其收敛性能.进而,将通信资源受限下的多敏感器分配问题建模成带约束的优化问题,设计一种改进的遗传算法,给出最优方案.用数值例子验证理论结果的正确性和有效性.This paper investigates the multi-sensor allocation strategy problem for linear system identification in a networked environment.A binary quantization mechanism is introduced to save communication bandwidth.For addressing the redundancy and channel congestion issues during data transmission,a differential event-driven communication mechanism is proposed,and its communication rate is provided.It is shown that such mechanism has the capability of complete information recovery.Based on the available data at the receiving end,identification algorithms for various finite impulse response systems are constructed,and their convergence performance is analyzed.Furthermore,the multi-sensor allocation problem under constrained communication resources is modeled as a constrained optimization problem,and an improved genetic algorithm is designed to give the optimal solution.Finally,a numerical example is used to verify the correctness and effectiveness of theoretical results.

关 键 词:多敏感器 系统辨识 事件驱动 通信资源受限 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象