一种行人遮挡下的UWB非视距传播识别方法  被引量:1

A UWB NLOS identification method under pedestrian occlusion

在线阅读下载全文

作  者:吴彤[1,2] 李业深 黄镇煌 张煜 张万乐 熊轲 WU Tong;LI Yeshen;HUANG Zhenhuang;ZHANG Yu;ZHANG Wanle;XIONG Ke(Engineering Research Center of Network Management Technology for High-Speed Railway of Ministry of Education,Beijing Jiaotong University,Beijing 100044,China;School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;State Grid Energy Research Institute Co.,Ltd.,Beijing 102209,China)

机构地区:[1]北京交通大学高速铁路网络管理教育部工程研究中心,北京100044 [2]北京交通大学计算机与信息技术学院,北京100044 [3]国网能源研究院有限公司,北京102209

出  处:《物联网学报》2023年第4期63-71,共9页Chinese Journal on Internet of Things

基  金:中央高校基本科研业务费项目(No.2022JBGP003);国家自然科学基金资助项目(No.62071033);国家重点研发计划(No.2020YFB1806903)。

摘  要:超宽带(UWB,ultrawideband)技术带宽大、抗干扰能力强、多径分辨率高,是室内定位的热点技术。然而由于室内环境复杂,UWB信号传播不可避免会受到遮挡,产生非视距(NLOS,non-line-of-sight)传播,极大降低了UWB定位的精度。因此,准确识别出NLOS数据,将其进行剔除或矫正,对缓解定位精度下降问题有重要的作用。现有NLOS识别工作多数聚焦于墙体等建筑结构遮挡的场景,行人遮挡的场景需要进一步讨论。由于人体遮挡对信号的影响复杂且不可忽略,针对行人遮挡下的UWB非视距传播识别问题进行研究。综合比较多种机器学习方法和信号特征组合,提出了一种基于第一路径信号功率、总接收信号功率和测量距离三维特征的随机森林方法,使用较少维度的特征达到了良好的NLOS识别效果。基于不同实测数据的实验结果表明,采用所提三维特征的随机森林方法在3组不同数据集上的NLOS识别准确率分别达到了99.05%、99.32%和98.81%。Ultrawideband(UWB)is a hot technology for indoor positioning with large bandwidth,strong anti-interference ability,and high multipath resolution capacity.However,due to the complex indoor environment,UWB signal propagation will inevitably be blocked,resulting in non-line-of-sight(NLOS)propagation,which greatly reduces the accuracy of UWB positioning.Therefore,identifying NLOS signals accurately and discarding or correcting them are important to alleviate the problem of the decline in positioning accuracy.The majority of present NLOS identification work focuses on scenes with building structures such as walls.Further discussion is needed for scenes obscured by pedestrians.Since the impact of human obstacles on the signals is more complex and cannot be ignored,the NLOS identification under pedestrian occlusion was studied.By comparing a variety of machine learning methods and signal feature combinations,the random forest method based on the three-dimensional features of the first path signal power,the received signal power,and the measured distance was proposed.These features with fewer dimensions and easy extraction were used to achieve a high identification percentage for NLOS.The experimental results based on the measured data of different devices show that the NLOS identification accuracy based on the proposed method reaches 99.05%,99.32%and 98.81%respectively.

关 键 词:UWB 室内定位 非视距识别 随机森林 

分 类 号:TN91[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象