检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王立娟[1] 钱鹏[1] 杨帅[1] 徐华[2] 李福凤[1] WANG Lijuan;QIAN Peng;YANG Shuai;XU Hua;LI Fufeng(School of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China;Tsinghua University,Beijing 100084,China)
机构地区:[1]上海中医药大学中医学院,上海201203 [2]清华大学,北京100084
出 处:《中国中医药信息杂志》2024年第1期147-151,共5页Chinese Journal of Information on Traditional Chinese Medicine
基 金:国家重点研发计划-中医药现代化研究重点专项(2018YFC1707602);国家自然科学基金(81774205);上海中医药大学预算内项目(18TS083);上海中医药大学杏林青年学者培养资助计划(2017年)。
摘 要:目的探讨中医舌下络脉诊的颜色信息客观识别方法。方法结合计算机视觉,尝试利用紧凑型全卷积网络(CFCNs)和19种深度学习分类模型等算法进行研究,并设计双络脉矩形算法,作为舌下络脉分割识别和颜色信息提取的手段。结果应用“去除反光点+数据扩充+数据后处理”方法获取的舌底分割的精确率为0.9559,F1值为0.9473、mIoU值为0.9000,应用“去除反光点+语义分割舌体结果作为输入+数据扩充+后处理边缘膨胀腐蚀”方法获取的舌下络脉分割结果精确率为0.7784、F1值为0.7383、mIoU值为0.5851,均明显优于目前经典的或改进的U-net模型。舌下络脉颜色分类上,DenseNet161-bc-early_stopping分类模型的效果最佳,准确率达0.8037。结论深度学习方法对于识别中医舌下络脉颜色信息具有一定作用,可为中医舌下络脉诊的颜色量化检测技术研究提供新方法。Objective To explore the method of objective identification of color information in sublingual veins diagnosis of TCM.Methods Combined with computer vision,compact fully convolution networks(CFCNs)and 19 deep learning classification models were used for study,and a double pulse rectangle algorithm was designed as a means of segmentation and recognition of sublingual veins and color information extraction.Results The accuracy of segmentation of tongue bottom obtained by the method of removing reflection+data expanding+data postprocessing was 0.9559,F1 value was 0.9473,and mIoU value was 0.9000.The accuracy of segmentation of sublingual veins obtained by the method of removing reflection+tongue input+data expanding+corrosion expansion was 0.7784,F1 value was 0.7383 and mIoU value was 0.5851,which were obviously superior to the current classic or improved U-net model.On the color classification of sublingual veins,the best classification model was DenseNet161-bc-early_stopping with an accuracy rate of 0.8037.Conclusion The deep learning method has a certain effect on identifying the color information of sublingual veins in TCM,which provides a new method for the research of quantitative color detection technology of sublingual veins diagnosis in TCM.
分 类 号:R241.25[医药卫生—中医诊断学] R2-03[医药卫生—中医临床基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7