检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨莉[1] YANG Li(Mechanical and Electrical Engineering,Sichuan Engineering Technical College,Deyang,Sichuan 618000,China)
机构地区:[1]四川工程职业技术学院机电工程系,四川德阳618000
出 处:《计量学报》2023年第12期1834-1841,共8页Acta Metrologica Sinica
摘 要:搭建镍基高温合金铣削实验测试平台,分析刀具磨损变化规律,提出了一种基于堆叠稀疏自动编码器和多传感器特征融合的新型深度学习方法,用于铣削刀具磨损预测。在时域、频域和时频域中提取信号特征,并通过相关性分析确定最优的多传感器特征,输入堆叠稀疏自动编码器进行深度特征学习。利用双向长短时记忆网络建立刀具磨损预测模型,应用不同的铣削磨损实验数据集来验证训练模型的预测性能。预测结果表明,所提模型均方根误差与传统模型相比至少减小了9.6%,证明了多传感器特征融合和深度学习方法的结合可以提高预测性能。A new deep learning method based on stacked sparse autoencoders and multi-sensor feature fusion is proposed for milling tool wear prediction by building a nickel-based high temperature alloy milling experimental test platform and analysing tool wear variation patterns.Signal features are extracted in the time domain,frequency domain and time-frequency domain,and the optimal multi-sensor features are determined through correlation analysis,which is input to SSAE for deep feature learning.A tool wear prediction model is established using a bidirectional long-short term memory,and different experimental data sets of milling wear are applied to verify the prediction performance of the trained model.The prediction results show that the root-mean-square error is reduced by at least 9.6%compared to each of the known models,proving that the combination of multi-sensor feature fusion and deep learning methods can improve the prediction performance.
关 键 词:刀具磨损 镍基高温合金 堆叠稀疏自动编码器 多传感器融合 深度学习方法
分 类 号:TB931[一般工业技术—计量学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28