检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵玉凤[1] ZHAO Yufeng(College of Computer and Information Engineering,Shanxi Technology and Business College,Taiyuan 030000,China)
机构地区:[1]山西工商学院计算机信息工程学院,太原030000
出 处:《延边大学学报(自然科学版)》2023年第4期298-307,共10页Journal of Yanbian University(Natural Science Edition)
基 金:山西省高等学校科技创新计划项目(2022L645);山西省高等学校教学改革创新项目(J20221313);山西省教育科学“十四五”规划课题(GH-220495)。
摘 要:研究了一类带有饱和发生率和随机比率依赖的HollingⅢ型功能反应的染病食饵捕食者随机模型.首先,利用Itô公式和构造的Lyapunov函数证明了染病食饵捕食者随机模型存在唯一的全局正解.其次,利用Has’miniskii遍历性理论证明了随机模型存在唯一的遍历平稳分布.再次,利用Itô公式、大数定律、鞅理论得到了染病食饵种群的阈值R^(h)_(0):当R^(h)_(0)<1时疾病将趋于灭绝,当R^(h)_(0)>1时疾病将长期存在.最后,利用数值仿真验证了所得结果的正确性.In this paper,we investigated the dynamics of a stochastic ratio-dependent infected prey-predator model with saturation incidence and Holling-typeⅢfunctional response.Firstly,we proved that the unique solution of stochastic model was globally positive by using Itôformula and constructing Lyapunov function.Secondly,the existence of a unique ergodic stationary distribution was studied by using the ergodicity theory of Hasminiskii.Thirdly,the threshold R^(h)_(0) for the infected prey population was obtained by using Itôformula,the law of large numbers,and the martingale theory,that is,the disease will tend to extinction if R^(h)_(0)<1,and it will exist for a long time if R^(h)_(0)>1.Finally,numerical simulations were used to verify the correctness of the obtained results.
关 键 词:染病食饵捕食者随机模型 饱和发生率 HollingⅢ型功能反应函数 比率依赖 平稳分布 灭绝
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.30.3