检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙岩 吴熙曦 雷震 SUN Yan;WU Xixi;LEI Zhen(Army Academy of Armored Forces,Beijing 100072,China)
机构地区:[1]陆军装甲兵学院,北京100072
出 处:《指挥与控制学报》2023年第5期596-605,共10页Journal of Command and Control
摘 要:为支持对遥感图像中地物目标的快速识别,提出一种基于改进U-Net神经网络的目标提取算法,选用经典的深度学习神经网络U-Net作为主干网络,提出了一种改进的U-Net网络架构,在编码器部分添加密集连接减轻(wide-range attention unit,WRAU)的网络退化问题和添加宽范围注意单元更好地融合多尺度特征通道,并在Massachusetts以及DeepGlobe数据集上进行评估,实验结果验证了所提网络架构的性能,相较于U-Net、ResUNet、UNetPPL、E-Net、SegNet等网络的优势.探讨了深度学习在遥感图像目标检测领域未来的研究趋势.To support the fast recognition of ground targets in remote sensing images,an improved U-Net neural network-based target extraction algorithm is proposed,the classical deep learning neural network U-Net is selected as the backbone network,dense connections in the encoder part is added to alleviate the network degradation problem of Wide-Range Attention Unit(WRAU)and is added to better fuse multi-scale feature channels.Massachusetts and DeepGlobe datasets are evaluated.The experimental results validate that the superiority performance of WRAU-Net compared with that of U-Net,ResUNet,UNetPPL,E-Net,SegNet and other networks.Finally,the future research trends of deep learning in the field of remote sensing image target detection is discussed in the conclusion section.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.184