检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lei SUN
机构地区:[1]Jincheng College,Nanjing University of Aeronautics and Astronautics,Nanjing 210012,China
出 处:《Frontiers of Mathematics in China》2023年第3期203-222,共20页中国高等学校学术文摘·数学(英文)
摘 要:This paper gives the truncated version of the generalized minimum backward error algorithm(GMBACK)—the incomplete generalized minimum backward perturbation algorithm(IGMBACK)for large nonsymmetric linear systems.It is based on an incomplete orthogonalization of the Krylov vectors in question,and gives an approximate or quasi-minimum backward perturbation solution over the Krylov subspace.Theoretical properties of IGMBACK including finite termination,existence and uniqueness are discussed in details,and practical implementation issues associated with the IGMBACK algorithm are considered.Numerical experiments show that,the IGMBACK method is usually more efficient than GMBACK and GMRES,and IMBACK,GMBACK often have better convergence performance than GMRES.Specially,for sensitive matrices and right-hand sides being parallel to the left singular vectors corresponding to the smallest singular values of the coefficient matrices,GMRES does not necessarily converge,and IGMBACK,GMBACK usually converge and outperform GMRES.
关 键 词:Nonsymmetric linear systems Krylov subspace methods minimum backward perturbation incomplete orthogonalization process GMBACK GMRES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26