检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡宏昌 吴乔艳 HU Hong-chang;WU Qiao-yan(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)
机构地区:[1]湖北师范大学数学与统计学院,湖北黄石435002
出 处:《湖北师范大学学报(自然科学版)》2023年第4期17-24,共8页Journal of Hubei Normal University:Natural Science
基 金:湖北师范大学“研究生创新科研”立项建设项目(2023Z080)。
摘 要:线性再生散度模型是线性回归模型、广义线性模型和指数线性模型的自然推广,极大L_(q)-似然估计是基于非广义熵的新参数估计方法,是极大似然估计的推广。用极大L_(q)-似然估计研究线性再生散度模型,在一定的条件下,给出了线性再生散度模型的极大L_(q)-似然估计的弱相合性和渐近正态性。最后通过模拟算例表明:随着n的增大参数估计值越接近真值;当q→1时,ML_(q)E的参数估计值接近于MLE的参数估计值。Linear reproductive dispersion models(LRDMS)are the natural generalization of linear regression models,generalized linear models and exponential linear models.Maximum L_(q)-likelihood estimator(ML_(q)E)is a new parametric estimator based on nonextensive entropy,which is a generalization of maximum likelihood estimation.In this paper,ML_(q)E is used to study LRDM,the weak consistency and asymptotic normality of ML_(q)E of RDLM are obtained under certain assumptions.Finally,it is illustrated by a simulation example:parametric estimator gets closer to the true value with the increasing of n,and the parametric estimator of ML_(q)E is close to the parameter estimate of MLE.
关 键 词:线性再生散度模型 极大L_(q)-似然估计 存在唯一性 弱相合性 渐近正态性
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7