检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔小同 王博[1] 李安琪 CUI Xiaotong;WANG Bo;LI Anqi(Liaoning Petrochemical University,Fushun 113001,China)
出 处:《现代信息科技》2023年第22期40-43,47,共5页Modern Information Technology
摘 要:目标检测广泛应用在公共场合的智能监控、自动驾驶与计算机辅助诊断等领域。文章提出了单层特征目标检测替代复杂的特征金字塔结构,从而提升模型的推理速度和预测精度。在模型搭建过程中,瓶颈特征结构采用了单层空洞残差编码器,样本选择采用了统一匹配机制,并采用了任务对齐检测器。在COCO(Microsoft Common Objects in Context)数据集下,大量实验证明该方法的有效性,以Res Net50为基准,预测精度达到了38.2 m AP,比Retina Net的推理速度快1.4倍,精度提高2.3 m AP。该模型具有推理速度快、预测精度高等特点,可以应用在许多特定场景中。Object detection is widely used in fields such as intelligent monitoring,autonomous driving,and computer-aided diagnosis in public places.This paper proposes a single-layer feature object detection method to replace the complex feature pyramid structure,in order to improve the inference speed and prediction accuracy of the model.During the model building process,a single-layer cavity residual encoder is used for the bottleneck feature structure,unified matching mechanism is used for the sample selection,and a task alignment detector is used.Under the COCO(Microsoft Common Objects in Context)dataset,a large number of experiments have demonstrated the effectiveness of this method.Based on ResNet50,the prediction accuracy reaches 38.0 mAP,which is 1.4 times faster than RetinaNet's inference speed and improves the accuracy by 2.3 mAP.This model has the characteristics of fast inference speed and high prediction accuracy,and can be applied in many specific scenarios.
关 键 词:目标检测 单层特征 特征金字塔 编码器 任务对齐
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222