Lexical simplification via single-word generation  被引量:1

在线阅读下载全文

作  者:Jipeng QIANG Yang LI Yun LI Yunhao YUAN Yi ZHU 

机构地区:[1]Department of Computer Science,Yangzhou University,Yangzhou 225127,China

出  处:《Frontiers of Computer Science》2023年第6期163-165,共3页中国计算机科学前沿(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.62076217 and 61906060);the Blue Project of Yangzhou University.

摘  要:1 Introduction Lexical simplification(LS)aims to simplify a sentence by replacing complex words with simpler words without changing the meaning of the sentence,which can facilitate comprehension of the text for people with non-native speakers and children.Traditional LS methods utilize linguistic databases(e.g.,WordNet)[1]or word embedding models[2]to extract synonyms or high-similar words for the complex word,and then sort them based on their appropriateness in context.Recently,BERT-based LS methods[3,4]entirely or partially mask the complex word of the original sentence,and then feed the sentence into pretrained modeling BERT[5]to obtain the top probability tokens corresponding to the masked word as the substitute candidates.They have made remarkable progress in generating substitutes by making full use of the context information of complex words,that can effectively alleviate the shortcomings of traditional methods.

关 键 词:TOKEN utilize SPEAKERS 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象