检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:代杜铃 姜瑢 荣丽 王美娥[2,3] 陈卫平 Dai Duling;Jiang Rong;Rong Li;Wang Meie;Chen Weiping(Institute of International Rivers and Eco-Security,Yunnan University,Kunming 650091,China;State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China;University of China Academy of Sciences,Beijing 100049,China)
机构地区:[1]云南大学国际河流与生态安全研究院,昆明650091 [2]中国科学院生态环境研究中心城市与区域生态国家重点实验室,北京100085 [3]中国科学院大学,北京100049
出 处:《生态毒理学报》2023年第6期98-111,共14页Asian Journal of Ecotoxicology
基 金:国家自然科学基金面上基金项目(42077368);国家自然科学基金青年基金项目(42107293)。
摘 要:目前我国现行的土壤环境质量标准主要以人体健康风险和食物链风险为主,对生态安全关注较少,缺乏生态风险的相关内容。准确推导土壤污染生态阈值,是制定土壤环境质量基准及标准的重要基础。本文围绕当前国内外常用土壤污染生态阈值推导过程,以及基于植物和土壤无脊椎动物个体以及微生物群落等不同生态受体推导生态阈值的优缺点进行了综述。针对目前推导土壤污染生态阈值的主要程序,即:基于实验室内生态毒性数据进行统计外推的方法存在物种代表性不足、生态相关性差以及缺乏场地-特异性等缺点,指出基于野外调查数据,利用机器学习算法构建精确度高、准确性强的污染物暴露剂量-效应模型的可行性,提出整合文献和毒理数据库中个体水平及野外生物群落水平生态毒性效应数据的场地-特异性土壤污染生态阈值推导框架;同时建议今后重点开展以下4个方面的工作:(1)野外土壤生物群落评估终点指标体系建立;(2)场地-特异性暴露-效应关系模型构建;(3)实验室生态毒理数据的筛查、评价及野外校正;(4)土壤生物毒理数据库平台搭建。以期为科学合理地制定基于生态风险土壤环境质量基准及标准提供重要的理论基础和技术支撑。Currently,soil environmental quality standards in China have been established primarily focusing on human health and food chain risks,while paying less attention to ecological security,and lacking perspectives of ecological risks.Accurately derived ecological thresholds of soil pollutants is the key for formulating soil environmental quality benchmarks and standards.In this paper,we reviewed the derivation processes of ecological thresholds for soil pollutants commonly used domestically and internationally.Advantages and disadvantages of ecological thresholds derived based on different ecological receptors such as plants,soil invertebrates and microbial communities were also discussed.Disadvantages of currently ecological thresholds which are derived based on the ecological toxicity data of plants and soil invertebrates in laboratories coupled with statistical extrapolation methods include insufficient species representation,poor ecological relevance and a lack of site-specificity.It was suggested that machine learning algorithms based on field survey data of contaminated sites could be used as a feasible way to construct exposure-effect models with high precision and accuracy.A site-specific ecological threshold deriving framework base on integrating ecotoxicity data at individual level from literature and toxicity database and ecotoxicity data at community level in fields was proposed.Future studies were suggested as follows:(1)establishment of m etrics systems for effect endpoints at community level in field;(2)construction of site-specific exposure-effect models;(3)screening and field evaluation and field calibration of ecotoxicity data at individual level from lab experiments;(4)establishment of soil biological toxicology database platform.The aim of this review was to provide an important theoretical basis and technical support for the scientific and rational development of soil environmental quality criteria and standards based on ecological risks.
关 键 词:土壤微生物生态功能 群落水平生态效应 生态风险 机器学习 场地-特异性
分 类 号:X171.5[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.180