检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王凯欣 刘丰 曾令芳[2] 刘超[3] WANG Kaixin;LIU Feng;ZENG Lingfang;LIU Chao(School of Information Science and Technology,Shandong Universi-ty,Qingdao 266237,China;Pediatric Dentistry Department 1,Jinan Stomatological Hospital,Jinan 250001,Chi-na;Department of Oral and Maxillofacial Surgery,Qilu Hospital of Shandong University,Jinan 250012,China)
机构地区:[1]山东大学信息科学与工程学院,山东青岛266237 [2]济南市口腔医院儿童口腔1科,山东济南250001 [3]山东大学齐鲁医院口腔颌面外科,山东济南250012
出 处:《口腔疾病防治》2024年第1期43-49,共7页Journal of Prevention and Treatment for Stomatological Diseases
基 金:国家自然科学基金面上项目(52172282)。
摘 要:目的研究深度学习技术智能诊断龋齿和根尖周炎的效果,初步探讨深度学习在口腔疾病诊断中的应用价值。方法以2298张包含健康牙齿、龋病、根尖周炎的根尖片数据集为研究对象,随机划分为1573张训练集图像,233张验证集图像以及492张测试集图像。通过多种神经网络对比验证,选择性能较好的MobileNetV3网络模型应用于牙病诊断,并通过调整网络超参数优化模型。采用精确率、准确率、召回率和F1分数评估模型识别龋齿和根尖周炎的能力,并使用类激活热力图对网络模型性能进行可视化分析。结果基于MobileNetV3网络模型的牙齿病变检测算法对健康牙齿、龋病和根尖周炎进行分类的精确率、召回率和准确率分别为99.42%、99.73%和99.60%,F1分数为99.57%,达到了较为理想的智能诊断效果。可视化类激活热力图也显示出网络模型能够较为准确地提取牙科病变的特征。结论基于MobileNetV3网络模型的牙齿病变检测算法能够排除图像质量和人为因素的干扰,具有较高的诊断准确率,可满足口腔医学教学和临床应用需求。Objective To research the effectiveness of deep learning techniques in intelligently diagnosing dental caries and periapical periodontitis and to explore the preliminary application value of deep learning in the diagnosis of oral diseases.Methods A dataset containing 2298 periapical films,including healthy teeth,dental caries,and peri-apical periodontitis,was used for the study.The dataset was randomly divided into 1573 training images,233 valida-tion images,and 492 test images.By comparing various neural network models,the MobileNetV3 network model with better performance was selected for dental disease diagnosis,and the model was optimized by tuning the network hyper-parameters.The accuracy,precision,recall,and F1 score were used to evaluate the model's ability to recognize dental caries and periapical periodontitis.Class activation map was used to visualization analyze the performance of the net-work model.Results The algorithm achieved a relatively ideal intelligent diagnostic effect with precision,recall,and accuracy of 99.42%,99.73%,and 99.60%,respectively,and the F1 score was 99.57%for classifying healthy teeth,den-tal caries,and periapical periodontitis.The visualization of the class activation maps also showed that the network model can accurately extract features of dental diseases.Conclusion The tooth lesion detection algorithm based on the Mo-bileNetV3 network model can eliminate interference from image quality and human factors and has high diagnostic accu-racy,which can meet the needs of dental medicine teaching and clinical applications.
关 键 词:牙科病变 龋病 根尖周炎 根尖片 智能诊断 图像处理 深度学习 MobileNetV3网络 类激活图 可视化分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244