检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:施端阳 林强[1] 胡冰[1] 杜小帅 SHI Duanyang;LIN Qiang;HU Bing;DU Xiaoshuai(Air-Defense Early Warning Equipment Department,Air Force Early Warning Academy,Wuhan 430019,China;Unit 95174 of the PLA,Wuhan 430040,China;Unit 94005 of the PLA,Jiuquan 735000,China)
机构地区:[1]空军预警学院防空预警装备系,湖北武汉430019 [2]中国人民解放军95174部队,湖北武汉430040 [3]中国人民解放军94005部队,甘肃酒泉735000
出 处:《系统工程与电子技术》2024年第1期143-151,共9页Systems Engineering and Electronics
摘 要:针对传统恒虚警率(constant false alarm rate,CFAR)检测方法检测率低的问题,提出一种基于YOLO(you only look once)的深度学习雷达目标检测方法。首先,利用同相正交(in-phase/quadrature,I/Q)数据匹配滤波后形成的雷达原始图像自建雷达目标图像数据集。然后,改进YOLO检测模型的网络结构、特征融合策略和损失函数以提高模型的精度,并引入迁移学习思想,利用预训练的深度学习网络提取图像特征,降低了检测模型对训练样本量的要求。最后,在自建数据集上对YOLO目标检测方法进行了实验验证。航管一次雷达实测数据的实验证明:与传统CFAR检测方法和两阶段的快速区域卷积神经网络(region convolutional neural networks,R-CNN)检测方法相比,所提方法的目标检测率大幅提高,虚警率明显降低,且实现了实时检测。Aiming at the low detection rate of traditional constant false alarm rate(CFAR)detection methods,a deep learning radar target detection method based on you only look once(YOLO)is proposed.Firstly,the radar target image dataset is constructed by using the original radar image formed by in-phase/quadrature(I/Q)data matching filtering.Then,the network structure,feature fusion strategy,and loss function of the YOLO detection model are improved to improve the accuracy of the model.And the idea of transfer learning is introduced to extract image features using the pre-trained deep learning network,which reduced the requirement of the detection model on the training sample size.Finally,the YOLO target detection method is experimentally verified on the self-built dataset.The experimental results on the measured data of the primary surveillance radar show that,compared with the traditional CFAR detection method and the two-stage faster region convolutional neural networks(R-CNN)detection method,the target detection rate of the proposed method is greatly improved,the false alarm rate is significantly reduced,and the real-time detection is realized.
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.147.87