基于PCA-T-S模糊神经网络底板破坏深度预测  

Failure Depth Prediction based on PCA-T-S Fuzzy Neural Network

在线阅读下载全文

作  者:高兵 岳冲 赵伟 GAO Bing;YUE Chong;ZHAO Wei

机构地区:[1]枣矿(集团)付村煤业有限公司,山东济宁277605

出  处:《煤》2024年第1期46-49,共4页Coal

摘  要:针对底板破坏深度影响因素较多、数据之间相关性较强的特点,选用了主成分分析法对原始数据进行降维处理,提取出主要指标信息;基于T-S模糊神经网络具有拟合性能强、预测准确度高的优点,建立PCA-T-S模糊神经网络模型。通过阅读大量文献资料,选取了煤层埋藏深度、煤层倾角、煤层开采厚度、工作面斜长、底板抗破坏能力以及断层的存在性作为底板破坏深度的主要影响因素,选取24组数据进行模型训练,建立预测模型,并对8组数据进行预测,通过与传统T-S模糊神经网络模型及“三下”开采规范收录公式进行对比,分析PCA-T-S模糊神经网络预测模型优于其它两种方法,预测的最大相对误差仅为15.25%.为底板破坏深度预测提供了一种新的预测方法。

关 键 词:底板破坏深度 主成分分析 T-S模糊神经网络 预测分析 

分 类 号:TD745[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象