检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:TIAN Lin CHENG Cheng ZHAO Zhenwen LIU Wei QI Li
机构地区:[1]Beijing National Laboratory for Molecular Sciences,Key Laboratory of Analytical Chemistry for Living Biosystems,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China [2]School of Pharmacy,Xinxiang Medical University,Xinxiang 453003,P.R.China [3]College of Chemistry&Environmental Science,Hebei University,Baoding 071002,P.R.China [4]School of Chemical Sciences,University of Chinese Academy of Sciences,Beijing 100049,P.R.China
出 处:《Chemical Research in Chinese Universities》2023年第6期1092-1099,共8页高等学校化学研究(英文版)
基 金:supported by the National Natural Science Foundation of China(No.22274159)。
摘 要:The construct of artificial nanocatalyts by simulating natural enzymes and thereby bringing new properties for practical applications is still a challenging task to date.In this study,chiral tetrapeptide(L-phenylalanine-L-phenylalanine-L-cysteine-L-histidine)-engineered copper nanoparticles(FFCH@CuNPs)were fabricated as an artificial peroxidase(POD).More interestingly,the nano-catalysts exhibited chiral identification function.In comparison with other nanocatalysts like L-cysteine-,L-histidine-,chiral dipeptide(L-cysteine-L-histidine)-,or chiral tripeptide(L-phenylalanine-L-cysteine-L-histidine)-modified CuNPs,FFCH@CuNPs demonstrated higher POD-mimetic catalytic activity in the 3,3',5,5'-tetramethylbenzidine(TMB)-H_(2)O_(2) system and stronger enantioselectivity in the recognition of 3,4-dihydroxy-D,L-phenylalanine(D,L-DOPA)enantiomers.Considering the strength difference between the intermolecular hydrogen bonding and theπ-πinteractions,the principle behind the chiral discrimination of D,L-DOPA was explored.Furthermore,higher contents of surface Cu2+ions and hydroxyl radicals were found in the FFCH@CuNPs-D-DOPA-TMB-H_(2)O_(2) system than in the FFCH@CuNPs-L-DOPA-TMB-H_(2)O_(2) system.Based on these results,a protocol for distinguishing between D,L-DOPA enantiomers through colorimetric recognition was established.This study provides a new insight into the design and fabrication of oligopeptides@CuNPs-based chiral nanozymes with improved catalytic performance and features additional to those of natural enzymes.
关 键 词:Chiral nanozyme Copper nanoparticle 3 4-Dihydroxy-D L-phenylalanine(D L-DOPA) ENANTIOSELECTIVITY Tetrapeptide ligand
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229