检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄新朝 张毅 HUANG Xinchao;ZHANG Yi(School of Vehicle Engineering,Chongqing University of Technology,Chongqing 400054,China)
出 处:《汽车安全与节能学报》2023年第6期715-722,共8页Journal of Automotive Safety and Energy
基 金:重庆市教委科学技术研究计划青年项目(KJQN202001105)。
摘 要:为了预测纯电动车的未来行驶能耗,利用从百度地图应用程序接口(API)所获取道路车流数据,并在云计算系统的在环平台(in-loop platform)上进行实车上路实验验证。用百度提供的道路车流数据,可以计算剩余里程、路径规划、能量管理策略以及充电桩布置等。这些数据与实车行驶数据结合,一并作为训练数据集。用k-means聚类分析算法与支持向量机(SVM)分类算法,来预测未来行驶能耗。对比池剩余电量(SOC)的预测值和实车上路实验所得的实际值。结果表明:对于一个40 min、约20 km的行驶工况,能耗预测的误差可以限制在一个标准差σ之内。从而验证了本文基于百度地图API车流数据的未来行驶能耗预测算法的准确性。The road traffic flow data obtained from the Baidu Map Application Programming Interface(API)was used to predict the future driving energy-consumption of pure electric vehicles,and a vehicle on-road experimental verification was conducted on the in-loop platform of the cloud computing system.Used the road traffic data obtained by Baidu to calculate the remaining mileage,the path planning,the energy-management strategies,and the charging pile layout,etc.These data were combined with vehicle-driving data and used as a training data set.The future energy-consumption was predicted with the k-means cluster analysis algorithm and the support vector machine(SVM)classifcation algorithm.The predicted value of the remaining battery state of charge(SOC)was compared with the actual value obtained from the vehicle on-road experiments.The results show that the error of future driving energy-consumption prediction are limited to inset of one-standard-deviationσfor a 40 min driving condition(about 20 km),based on Baidu Map API traffic flow data.Therefore,the accuracy of the proposed prediction algorithm in this paper is verified.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.120.72