基于ECG的可电击复律心律自动判别算法研究  

Research on Shockable Rhythm Detection Algorithm Based on Machine Learning

在线阅读下载全文

作  者:郑越 侯星宇 邬小玫[1] Zheng Yue;Hou Xingyu;Wu Xiaome(School of Information Science and Engineering,Fudan University,Shanghai 200433,China)

机构地区:[1]上海复旦大学信息科学与工程学院,上海200433

出  处:《中国生物医学工程学报》2023年第5期572-582,共11页Chinese Journal of Biomedical Engineering

基  金:国家自然科学基金(1171009,61801123);上海市科委重点项目(2017SHZDZX01,16441907900);上海市经信委工业强基项目(GYQJ-2018-2-05)。

摘  要:体外自动除颤器(AED)是挽救心脏骤停(SCA)患者生命的重要设备。可电击复律心律自动判别算法(SAA)是AED的核心技术。本研究在构建包括8 s的2024段可电击复律心律(SHR)心电图(ECG)和7884段不可电击复律心律(NSHR)ECG数据集的基础上,提出了一种基于机器学习的SAA。首先提取ECG的时域、频域、复杂度相关的32个特征,经筛选得到6个有效特征;之后用支持向量机实现SHR和NSHR自动分类。根据500次按患者随机分组的实验,敏感度、特异性、准确率的均值±标准差分别为97.62%±0.18%、99.15%±0.04%、98.79%±0.08%。所提出的SAA符合美国心脏病协会对AED中SAA敏感度超过90%,特异性超过95%的要求,可作为AED算法模块进行SHR的自动判别。Automatic external defibrillator(AED)is an important device in saving patients with cardiac arrest(SCA).Shockable advice algorithm(SAA)is the key technology of AED.In this work,our model was trained with a data set including 2024 segments of shockable rhythms(SHR)and 7884 segments of non-shockable rhythms(NSHR).We proposed a SAA based on machine learning.Combining 6 effective features selected from 32 features such as time domain,frequency domain and complexity,support vector machine was employed to classify SHR and NSHR.After 500 experiments,the mean value±standard deviation of sensitivity of the algorithm was 97.62±0.18%,the specificity was 99.15±0.04%,and the accuracy was 98.79±0.08%.The results showed that the SAA proposed in this paper met the requirements of American Heart Association for SAA performance in AED,and it can be used as an AED algorithm module for automatic discrimination of SHR.

关 键 词:可电击复律心律自动判别 心电信号 机器学习 特征提取 特征选择 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象