检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘思慧 高全学[2] 宋伟 谢德燕 LIU Sihui;GAO Quanxue;SONG Wei;XIE Deyan(School of Science and Information Science,Qingdao Agricultural University,Qingdao 266109,Shandong,China;School of Telecommunications Engineering,Xidian University,Xi'an 710071,Shaanxi,China;Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,Guangdong,China)
机构地区:[1]青岛农业大学理学与信息科学学院,山东青岛266109 [2]西安电子科技大学通信工程学院,陕西西安710071 [3]深圳大学微纳光电子学研究院,广东深圳518060
出 处:《计算机工程》2024年第1期129-137,共9页Computer Engineering
基 金:国家自然科学基金面上项目(61875130,62175159);山东省自然科学基金面上项目(ZR202102180986);广东省自然科学基金面上项目(2023A1515012888);深圳市基础研究重点项目(JCYJ20200109113808048);青岛农业大学人才启动项目(665/1120051);青岛农业大学博士基金(663/1122014);深圳大学医工交叉研究基金(86901/00000311)。
摘 要:现有基于图的多视图聚类方法通常难以同时考虑不同视图的潜在高阶相关信息和每个视图内的全局几何结构,导致聚类性能受限。为此,提出一种基于加权张量低秩约束的多视图谱聚类方法(WTLR-MSC)。根据多视图数据构建概率转移矩阵,将所有的概率转移矩阵构建为三阶张量,并借助鲁棒主成分分析思想将其分解为目标张量和误差张量。使用加权张量核范数约束目标张量的旋转张量,利用奇异值先验信息准确挖掘多视图数据的潜在高阶相关信息,并利用核范数约束目标张量的每个正切片以刻画每个视图内的全局几何结构。基于此建立数学模型,并设计有效的求解算法。在BBCSport、BBC4View、COIL20、UCI Digits 4个常用数据集上的实验结果表明,WTLR-MSC较ERLRT、MCA~2M、MGL-WTNN等聚类方法的性能有显著提升,准确率、标准化互信息、F1值、精确率、召回率相较于次优方法最高提升约1.3、1.0、1.2、1.6和0.8个百分点,大幅增强了多视图聚类的稳健性。Many existing multiview clustering methods fail to simultaneously exploit the high-order correlations embedded in different views and the global geometric structure of each single view,resulting in inadequate clustering performance.A Weighted Tensor Low-Rank constraint-based Multiview Spectral Clustering(WTLR-MSC)method is proposed in this study to address this limitation.First,a set of transition probability matrices are constructed from each single view.Second,a three-order tensor,which is decomposed into object and error tensors,is constructed using these matrices.The object tensor is rotated and constrained using the weighted tensor nuclear norm.Thus,the high-order correlations can be investigated efficiently.Simultaneously,the nuclear norm is applied to regularize each frontal slice of the object tensor to obtain the global geometric structure of each view.This study proposes an efficient optimization algorithm to solve the challenged mathematical optimization problem.Experiments on four datasets(BBCSport,BBC4View,COIL20,and UCI Digits)indicate that WTLR-MSC outperforms many state-of-the-art multiview methods,such as ERLRT,MCA2M,and MGL-WTNN.In terms of Accuracy(ACC),Normalized Mutual Information(NMI),F1-score,Precision,and Recall,WTLR-MSC improves by approximately 1.3,1.0,1.2,1.6,and 0.8 percentage points,demonstrating an enhanced robustness of multiview clustering.
关 键 词:加权张量核范数 谱聚类 多视图谱聚类 图学习 张量低秩
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.57