检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵栓峰[1] 王帅钧 李阳 吴宇尧 王梦维 ZHAO Shuanfeng;WANG Shuaijun;LI Yang;WU Yuyao;WANG Mengwei(School of Mechanical Engineering,Xi′an University of Science and Technology,Xi′an 710054,Shaanxi,China)
机构地区:[1]西安科技大学机械工程学院,陕西西安710054
出 处:《隧道建设(中英文)》2023年第12期1996-2006,共11页Tunnel Construction
基 金:陕西省重点研发项目(2020ZDLGY04-06)。
摘 要:为解决智能化盾构施工中,施工隧道内所采集的渣土车原始点云数据存在畸变,从而影响渣土体积测量准确性的问题,基于点云数据处理与深度学习的方法,建立基于深度卷积自编码网络的渣土车厢自适应去畸变模型。首先,采用包围盒滤波和反距离加权插值对渣土车厢点云数据进行滤波与补全操作,接着使用真实渣土车厢尺寸构建网络的理想输出,并通过灰度化将点云数据转换为伪特征图,构建网络的数据集;然后,以传统卷积自编码网络为基础构建渣土车厢自校正网络,网络设计融合堆叠式卷积层和栈式自编码的处理方法,增加网络层数以获得更优的特征表达;最后,使用盾构掘进现场数据进行试验。结果表明:本文提出的渣土车厢点云数据自校正方法在保证时间效率的前提下,渣土车厢数据的峰值信噪比(PSNR)达到29.73,结构相似性(SSIM)达到0.86,均优于传统自编码网络与几何约束矫正的方法。证明了本文方法的正确性与有效性,能够提高隧道内所获取渣土车厢点云数据的可用性,同时为点云数据去畸变技术在三维重构和工程领域的应用提供了理论依据。In intelligent shield tunneling,the accuracy of dump volume measurements is compromised by distortions in the raw point cloud data of the dump carriages.To address this issue,a model that utilizes a deep convolutional self-coding network for self-adaptive distortion-removal in dump carriages is developed.This model combines point cloud processing with deep-learning techniques.Initially,surround box filtering and anti-distance-weighted interpolation are applied for the data refinement.Subsequently,the actual size of the slag soil carriage is utilized to establish the ideal output of the network,transforming the point cloud into pseudo-symbols using grayscale values to create a network dataset.Furthermore,the dump carriage self-coding network based on a traditional convolutional self-coding framework is constructed.This involves an integrated network design with stacked convolutional layers and autoencoders to enhance the network depth to achieve superior feature representation.Finally,the method is tested using shield tunneling data.The experimental results indicate that the proposed method significantly outperforms traditional self-coding networks and geometric constraint correction methods in terms of time efficiency.With a peak signal-to-noise ratio of 29.73 and a structural similarity index of 0.86,the proposed approach demonstrates its superiority and validity.This advancement not only enhances the utility of dump carriage point cloud data,but also lays a theoretical foundation for applying point cloud distortion-removal technology in 3D reconstruction and engineering projects.
关 键 词:盾构法 渣土车 渣土体积测量 点云数据畸变校正 深度学习 卷积自编码器
分 类 号:U45[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222