检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦涛[1] 杜尚恒 常元元 王晨旭[1] QIN Tao;DU Shangheng;CHANG Yuanyuan;WANG Chenxu(MOE Key Lab for Intelligent and Network Security,Xi’an Jiaotong University,Xi’an 710049,China)
机构地区:[1]西安交通大学智能网络与网络安全教育部重点实验室,西安710049
出 处:《西安交通大学学报》2024年第1期1-12,共12页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(62172324);陕西省重点研发计划资助项目(2023-YBGY-269,2022QCY-LL-33HZ)。
摘 要:ChatGPT是自然语言处理领域的一项重要技术突破,专注于对话生成任务,在多种任务中表现出卓越的性能。主要探讨ChatGPT的演变历程、关键技术,并分析了其未来可能的发展方向。首先,介绍了ChatGPT的模型架构和技术演进过程。随后,重点讨论了ChatGPT的关键技术,包括提示学习与指令微调、思维链、人类反馈强化学习。然后,分析了由于基于概率生成原理所造成的固有局限,包括事实性错误、垂直领域深度性弱、潜在的恶意应用风险、可解释性及模型实时性差等。最后,探讨了其在典型应用中存在的问题和相应的解决途径,包括在训练评估过程中考虑道德和安全性因素,以降低潜在风险;结合外部专家知识和迁移学习,以提高模型对特定领域的理解能力,更好地适应特定任务场景;引入多模态数据,以提高模型信息理解能力,增强模型通用性和泛化性。通过对ChatGPT模型框架、技术演变与关键技术的分析,为深入理解ChatGPT提供帮助;结合原理分析其固有缺陷,并结合实际应用中存在的问题,挖掘未来可能的研究方向,为自然语言处理领域的深入研究提供有益参考。ChatGPT has emerged as a significant advancement in natural language processing,specifically in the domain of dialogue generation,and has achieved excellent performance in many areas.This paper aims to explore its architecture,underlying technologies,and potential areas for further investigation.The paper begins by discussing the architecture and technology evolution process.Next,the focus shifts to a comprehensive analysis of the key technologies,including the prompt learning and instruction fine-tuning,chain of thought and reinforcement learning through human feedback.Furthermore,the paper addresses the limitations of ChatGPT stemming from its probabilistic generation principles,including factual errors,poor performance in specific domain,potential malicious risk,poor interpretability and real-time.Finally,the paper outlines possible research directions based on the practical challenges observed in real-world applications,including the ethical and safety factors in the training process to reduce potential risks.Additionally,integrating external expert knowledge and employing transfer learning methods are proposed to enhance ChatGPT’s performance in domain-specific tasks.Moreover,improving its information understanding capabilities based on the multimodal data is also considered as a notable avenue for development.By providing an in-depth analysis of ChatGPT’s framework and key technologies,this paper aims to foster a deeper understanding of the system and also presents potential research directions to inspire further investigation in the field.
关 键 词:ChatGPT模型架构 概率生成 强化学习 迁移学习
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.24.23