基于T-S模糊神经网络的供电公司客户服务质量评估研究  

Research on Customer Service Quality Evaluation of Power Supply Companies Based on T-S Fuzzy Neural Network

在线阅读下载全文

作  者:王媛媛 任晓奎 王天宇 韩培军 黄庆 张广博 WANG Yuanyuan;REN Xiaokui;WANG Tianyu;HAN Peijun;HUANG Qing;ZHANG Guangbo(Cangzhou Power Supply Branch,State Grid Hebei Electric Power Co.,Ltd.,Cangzhou,Hebei 061000,China)

机构地区:[1]国网河北省电力有限公司沧州供电分公司,河北沧州061000

出  处:《自动化应用》2023年第24期98-100,共3页Automation Application

摘  要:为了优化供电公司客户服务效果,提升客户服务质量水平,获取供电服务中存在的问题与不足,本文引入T-S模糊神经网络,开展了基于T-S模糊神经网络的供电公司客户服务质量评估研究。首先,从6个维度选取了供电公司客户服务质量一级评估指标,并在此基础上进行细分,为评估工作奠定良好的基础。然后,利用T-S模糊神经网络全方位评估供电公司客户服务质量,获取服务质量评估分数。最后,建立服务质量评估集合,按照评估分数评估客户服务质量等级。本文方法可从多个维度得出客户服务质量评估分数,有针对性地制定服务质量提高举措,以提高客户用电服务体验与供电公司综合经济效益。In order to optimize the customer service effect of power supply companies,improve the level of customer service quality,and identify the problems and shortcomings in power supply services,this paper introduces T-S fuzzy neural network and conducts research on customer service quality evaluation of power supply companies based on T-S fuzzy neural network.Firstly,a first level evaluation index for customer service quality of power supply companies was selected from six dimensions,and based on this,it was further subdivided to lay a solid foundation for the evaluation work.Then,the T-S fuzzy neural network is used to comprehensively evaluate the customer service quality of the power supply company and obtain the service quality evaluation score.Finally,establish a service quality evaluation set and evaluate the customer service quality level based on the evaluation scores.This method can obtain customer service quality evaluation scores from multiple dimensions,and then develop targeted measures to improve service quality,improve customer electricity service experience,and enhance the comprehensive economic benefits of power supply companies.

关 键 词:T-S模糊神经网络 供电公司 服务质量评估 

分 类 号:F426[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象