考虑异常监测数据影响的桥梁拉索振动频率识别方法研究  被引量:5

Vibration frequency identification method of bridge cable considering abnormal monitoring data

在线阅读下载全文

作  者:钟国强 柳尚 徐润 丁幼亮[2] 宋杰 鞠翰文 邓扬 ZHONG Guoqiang;LIU Shang;XU Run;Ding Youliang;SONG Jie;JU Hanwen;DENG Yang(Shandong Provincial Communications Planning and Design Institute Group Co.Ltd.,Jinan 250101,China;School of Civil Engineering,Southeast University,Nanjing 210096,China;School of Civil and Transportation Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)

机构地区:[1]山东省交通规划设计院集团有限公司,山东济南250101 [2]东南大学土木工程学院,江苏南京210096 [3]北京建筑大学土木与交通工程学院,北京100044

出  处:《中南大学学报(自然科学版)》2023年第12期4870-4881,共12页Journal of Central South University:Science and Technology

基  金:山东省交通运输科技计划项目(2021B66);国家自然科学基金资助项目(51878027);北京市教委青年拔尖人才培育计划项目(CIT&TCD201904060)。

摘  要:针对桥梁健康监测系统中包含大量异常监测数据的现象,提出考虑异常监测数据影响的桥梁拉索振动频率识别方法。首先,根据正常监测数据的功率谱密度函数的分布特征,确定拉索振动频率的近似频带区间,进而采用峰值拾取法自动化获取近似频带区间内的拉索振动频率初始识别值。其次,利用前三阶频率建立三维空间密度聚类模型,进而采用聚类模型检测并剔除频率初始识别值中的异常值。利用外滩大桥的拉索加速度监测数据对所提方法进行验证。分析不同类型异常监测数据对拉索频率识别值的影响,考察不同维密度聚类模型对频率异常识别值的检测准确率。研究结果表明:异常监测数据严重干扰了拉索振动频率的准确识别;三维空间密度聚类模型对拉索振动频率异常识别值的检测准确率达到了98%以上,且剔除异常识别值后的拉索频率与环境温度呈现合理的相关性。Aiming at the phenomenon that the bridge health monitoring systems contain a large number of abnormal monitoring data,an identification method for vibration frequencies of bridge cables with the influence of abnormal monitoring data was proposed.Firstly,the approximate band interval of each vibration frequency of the cables was determined according to the distribution characteristics of power spectral density function of normal monitoring data.Peak picking method was adopted to extract the initial identified results of the vibration frequencies of bridge cables automatically in the approximate band intervals.Secondly,a three-dimensional spatial density clustering model was established based on the first three order frequencies.Then,the abnormal values were detected and eliminated from the initial identified results of the vibration frequencies by using the clustering model.The proposed method was verified by using the cable acceleration monitoring data of the Waitan Bridge.The influence of different abnormal monitoring data on identification results of cable frequencies was analyzed.And the detection accuracy of density clustering models with different dimensions on abnormal values of the identified cable frequencies was also investigated.The results show that frequency identification of bridge cables is seriously interfered by abnormal monitoring data.The detection accuracy of three-dimensional spatial density clustering model on the abnormal identified frequencies is more than 98%.In addition,the cable frequency after removing the abnormal identification values shows a reasonable correlation with the ambient temperature.

关 键 词:结构健康监测 频率识别 拉索 异常数据 密度聚类 

分 类 号:TU311[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象