检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李琳[1] 刘永辉 LI Lin;LIU Yonghui(School of Optical-Electronical Information and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《光学技术》2023年第6期704-710,共7页Optical Technique
基 金:国家自然科学基金项目(61673277);上海理工大学横向科研项目(H-2021-302-129)。
摘 要:针对大气湍流环境下光学元件平面面形PV值测量这一问题。首先建立了一种大气湍流下斐索干涉仪的模型,通过该模型得到1000张干涉条纹图像;然后提出了一种基于卷积神经网络估算PV值的方法,将干涉条纹图像作为卷积神经网络的输入,利用卷积神经网络提取图像的特征信息,得到PV值;最后将得到的结果与ASTM计算得到的结果、相位解包裹得到的结果以及BP神经网络得到的结果进行对比,发现利用卷积神经网络的方法偏差为2.25×10^(-4)λ,较ASTM、相位解包裹以及BP神经网络得到的结果偏差更小。实验结果表明此方法具有抗干扰性强、精度高、运算快的优点,是一种有效的抗大气湍流影响的光学检测方法。Given the task of quantifying the PV value of the plane shape of an optical element under atmospheric turbulence.Initially,a model of the Fizeau interferometer under atmospheric turbulence is developed,through which l,ooo interference fringe images are obtained.What's more,a method of estimating PV value based on convolutional neural network is proposed,leting the interference fringes image as the input of convolutional neural network and extracting the feature information from the image to obtain PV value.Finally,the obtained results are compared with those obtained by ASTM(American Society of Testing Materials)calculation,phase unwrapping and BP(Back Propagation)neural network,and the deviation using the method of convolutional neural network is 2.25×10^(-4)λ,which is more smaller than the results obtained by ASTM,phase unwrapping and BP neural network.The experimental results show that the method has strong interference resistance,high precision and fast operation,and is an effective optical detection method against atmospheric turbulence.
关 键 词:大气湍流 平面面形测量 卷积神经网络 斐索干涉仪
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7