基于图像特征筛选与融合网络的电力系统动态稳定评估  被引量:4

Dynamic stability assessment of power system based on image feature filtering and fusion network

在线阅读下载全文

作  者:卢宇飞 林建新[1] LU Yufei;LIN Jianxin(Key Laboratory of New Energy Generation and Power Conversion(College of Electrical Engineering and Automation,Fuzhou University),Fuzhou 350108)

机构地区:[1]福建省新能源发电与电能变换重点实验室(福州大学电气工程与自动化学院),福州350108

出  处:《电气技术》2023年第12期1-6,共6页Electrical Engineering

基  金:国网青海省电力公司科技项目资助(SGQH0000DKJS2310347)。

摘  要:传统神经网络在进行特征提取的过程中,会丢失部分浅层特征信息,导致模型评估准确度降低。为了充分利用各层特征信息,本文在传统神经网络中嵌入特征融合模块,提出一种图像特征筛选与融合网络。该网络首先将各层特征经过线性及非线性变化进行融合,提高有效特征的表达,然后基于Pearson相关性量化特征融合权重,并根据该权重对各层特征进行加权融合。在IEEE-39节点和IEEE-145节点系统中的仿真结果表明,本文所提网络比传统神经网络具有更优的评估性能。During the feature extraction process of traditional neural networks,some shallow information may be lost,which leads to a decrease in the accuracy of model evaluation.In order to fully utilize the feature information of each layer,in this paper,the feature fusion module is embedded in traditional neural networks.An image feature filtering and fusion network is proposed.The network first fuses the features of each layer through linear and nonlinear changes to improve the expression of effective features.Then,the feature fusion weights are quantified based on Pearson correlation.Finally,weighted fusion is performed on the features of each layer based on the feature fusion weights.The simulation experiments are carried out in IEEE 39-bus system and IEEE 145-bus system.The results show that the proposed network has better evaluation performance compared to traditional neural networks.

关 键 词:神经网络 特征融合 特征筛选 动态稳定评估 图像识别 

分 类 号:TM712[电气工程—电力系统及自动化] TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象