检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢宇飞 林建新[1] LU Yufei;LIN Jianxin(Key Laboratory of New Energy Generation and Power Conversion(College of Electrical Engineering and Automation,Fuzhou University),Fuzhou 350108)
机构地区:[1]福建省新能源发电与电能变换重点实验室(福州大学电气工程与自动化学院),福州350108
出 处:《电气技术》2023年第12期1-6,共6页Electrical Engineering
基 金:国网青海省电力公司科技项目资助(SGQH0000DKJS2310347)。
摘 要:传统神经网络在进行特征提取的过程中,会丢失部分浅层特征信息,导致模型评估准确度降低。为了充分利用各层特征信息,本文在传统神经网络中嵌入特征融合模块,提出一种图像特征筛选与融合网络。该网络首先将各层特征经过线性及非线性变化进行融合,提高有效特征的表达,然后基于Pearson相关性量化特征融合权重,并根据该权重对各层特征进行加权融合。在IEEE-39节点和IEEE-145节点系统中的仿真结果表明,本文所提网络比传统神经网络具有更优的评估性能。During the feature extraction process of traditional neural networks,some shallow information may be lost,which leads to a decrease in the accuracy of model evaluation.In order to fully utilize the feature information of each layer,in this paper,the feature fusion module is embedded in traditional neural networks.An image feature filtering and fusion network is proposed.The network first fuses the features of each layer through linear and nonlinear changes to improve the expression of effective features.Then,the feature fusion weights are quantified based on Pearson correlation.Finally,weighted fusion is performed on the features of each layer based on the feature fusion weights.The simulation experiments are carried out in IEEE 39-bus system and IEEE 145-bus system.The results show that the proposed network has better evaluation performance compared to traditional neural networks.
关 键 词:神经网络 特征融合 特征筛选 动态稳定评估 图像识别
分 类 号:TM712[电气工程—电力系统及自动化] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38