检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许可 范馨月 XU Ke;FAN Xinyue(College of Mathematics and Statistics,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学数学与统计学院,贵州贵阳550025
出 处:《电子设计工程》2024年第2期157-161,共5页Electronic Design Engineering
基 金:贵州省数据驱动建模学习与优化创新团队(黔科合平台人才[2020]5016);贵州大学教改项目(XJG2021027);贵州大学一流课程培育项目(XJG2021040)。
摘 要:超宽带高精度定位作为5G重大应用场景的关键技术,定位准确度极易受到室内复杂环境的干扰。为提高室内复杂环境下超宽带三维空间定位精度,提出了一种结合切比雪夫图卷积以及门控循环单元网络的定位模型。通过切比雪夫图卷积网络聚合静态的图结构和动态节点信息,结合门控循环网络捕捉节点间的依赖关系,进而精准预测靶点空间位置。实验结果表明,该模型相比于门控循环网络定位模型,无信号干扰情况下,X、Y、Z方向上的精度分别提高28.29%、41.48%、52.99%;有信号干扰情况下,精度分别提高34.95%、41.70%、36.43%,有效提高了基站处于信号干扰时室内定位的精度,更适合动态复杂的室内环境。As a key technology for major 5G application scenarios,UWB high⁃precision positioning is highly susceptible to interference from the complex indoor environment.To improve the accuracy of UWB 3D spatial localization in indoor complex environments,this paper proposes a localization model combining Chebyshev graph convolution and Gated Recurrent Unit.The static graph structure and dynamic node information are aggregated by the Chebyshev graph convolution network,and the depen⁃dencies between nodes are captured by the gated recurrent network to accurately predict the spatial location of the target.The experimental results show that compared with the gated recurrent network localization model,the accuracy in X,Y and Z directions is improved by 28.29%,41.48%and 52.99%,respectively,without signal interference,and 34.95%,41.70%and 36.43%,respectively,in the presence of signal interference.It is more suitable for dynamic and complex indoor environment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116